Patch Locale of a Spectral Locale in Univalent Type Theory

Ayberk Tosun (j.w.w. Martín Escardó)

15 March 2023 YaMCATS 30 Birmingham, UK

What is a locale?

Notion of space characterised solely by its frame of opens.

Spectral

Stone

Spectral

A locale in which the compact opens form a basis that is closed under finite meets.

Stone

A compact locale in which the clopens form a basis.

Spectral

A locale in which the compact opens form a basis that is closed under finite meets.

Space of ideals of distributive lattice.

Stone

A compact locale in which the clopens form a basis.

Space of ideals of a Boolean algebra.

Spectral

A locale in which the compact opens form a basis that is closed under finite meets.

Space of ideals of distributive lattice.

Morphisms are continuous maps reflecting compact opens.

Stone

A compact locale in which the clopens form a basis.

Space of ideals of a Boolean algebra.

Morphisms are continuous maps.

Spectral

A locale in which the compact opens form a basis that is closed under finite meets.

Space of ideals of distributive lattice.

Morphisms are continuous maps reflecting compact opens.

Stone

A compact locale in which the clopens form a basis.

Space of ideals of a Boolean algebra.

Morphisms are continuous maps.

Every Stone locale is spectral.

Spectral

A locale in which the compact opens form a basis that is closed under finite meets.

Space of ideals of distributive lattice.

Morphisms are continuous maps reflecting compact opens.

Stone

A compact locale in which the clopens form a basis.

Space of ideals of a Boolean algebra.

Morphisms are continuous maps.

Every Stone locale is spectral.

Patch universally transforms a spectral locale into a Stone one.

Patch as a coreflector

Spectral locale in consideration Its patch

Spectral locale in consideration Its patch

Sierpiński space (Ω)

Scott topology of a (Scott) domain

 $\mathcal{P}(\mathbb{N})\simeq \Omega^{\mathbb{N}}$

Spectral locale in consideration Its patch Sierpiński space (Ω) Booleans (2)

Scott topology of a (Scott) domain

 $\mathcal{P}(\mathbb{N})\simeq \Omega^{\mathbb{N}}$

Spectral locale in consideration Its patch Sierpiński space (Ω) Booleans (2)

Scott topology of a (Scott) domain Lawson topology

 $\mathcal{P}(\mathbb{N})\simeq \Omega^{\mathbb{N}}$

Spectral locale in consideration Its patch Sierpiński space (Ω) Booleans (2)

Scott topology of a (Scott) domain Lawson topology

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$

N Cantor space $(2^{\mathbb{N}})$

Spectral locale in consideration Its patch Sierpiński space (Ω) Booleans (2)

Scott topology of a (Scott) domain Lawson topology

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$

N Cantor space $(2^{\mathbb{N}})$

Scott topology of domain \mathbb{N}_1 N_∞

Implement the patch locale in univalent type theory predicatively i.e. without using propositional resizing axioms.

Definition (Family)

The type of W -families over a type $A : U$ is $Fam_W(A) := \Sigma_{I:W} (I \rightarrow A)$.

Definition (Family)

The type of *W*-families over a type $A: U$ is Fam_W $(A) := \sum_{i \in \mathcal{N}} (I \rightarrow A)$.

Definition (Subfamily)

A subfamily of a W-family (I, α) is a family $(J, \alpha \circ \beta)$ where (J, β) is itself a W-family on *I*.

Definition (Family)

The type of *W*-families over a type $A: U$ is Fam_W $(A) := \sum_{i \in \mathcal{N}} (I \rightarrow A)$.

Definition (Subfamily)

A subfamily of a W-family (I, α) is a family $(J, \alpha \circ \beta)$ where (J, β) is itself a W-family on *I*.

*Definition (*V*-smallness)*

A type A : $\mathcal U$ is called $\mathcal V$ -small if $\sum_{B:\mathcal V} \left(\mathcal A \simeq B \right)$.

Definition (Family)

The type of *W*-families over a type $A: U$ is Fam_W $(A) := \sum_{i \in \mathcal{N}} (I \rightarrow A)$.

Definition (Subfamily)

A subfamily of a W-family (I, α) is a family $(J, \alpha \circ \beta)$ where (J, β) is itself a W-family on *I*.

*Definition (*V*-smallness)*

A type A : $\mathcal U$ is called $\mathcal V$ -small if $\sum_{B:\mathcal V} \left(\mathcal A \simeq B \right)$.

Definition (Propositional resizing)

The propositional resizing axiom from U to V says

 $\prod_{P:\mathcal{U}}$ is-prop $(P)\to$ is- \mathcal{V} -small $(P).$

Frames in type theory

Definition (Frame)

A (U, V, W)*-frame* consists of

- \blacktriangleright a type $A: \mathcal{U}$,
- ▶ a partial order $\leq : A \rightarrow A \rightarrow \text{hProp}_\mathcal{V}$,
- ▶ a top element ⊤ : *A*,
- **►** a binary meet operation $-\wedge : A \rightarrow A \rightarrow A$,
- \blacktriangleright a join operation \bigvee \bot : Fam $_{\mathcal{W}}(A) \rightarrow A$,
- ▶ satisfying distributivity i.e. $x \wedge \bigvee_{i:I} y_i = \bigvee_{i:I} x \wedge y_i$ for every x : A and family $\{y_i\}_{i:I}$ in $A.$

Some notation

A frame homomorphism is a function preserving finite meets and arbitrary joins.

The category of frames and their homomorphisms is denoted **Frm**; its opposite is denoted **Loc**.

▶ Morphisms of **Loc** are called continuous maps.

The frame corresponding to a locale *X* is denoted $O(X)$.

We work in the spatial direction:

- ▶ *X*, *Y*, *Z*, . . . range over locales;
- \blacktriangleright $f, g: X \rightarrow Y$ range over continuous maps;
- \blacktriangleright *U*, *V*, *W*, ... : $\mathcal{O}(X)$ range over opens; and
- ▶ $f^*: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$ denotes the frame homomorphism corresponding to a continuous map $f : X \to Y$ of locales.

Notions of size for locales

The generality of $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locales is **almost never** needed.

Definition

A small locale is a $(\mathcal{U}, \mathcal{U}, \mathcal{U})$ -locale. A large and locally small locale is a $(\mathcal{U}^{+}, \mathcal{U}, \mathcal{U})$ -locale.

Impredicatively, one works with small locales.

Notions of size for locales

The generality of $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locales is **almost never** needed.

Definition

A small locale is a $(\mathcal{U}, \mathcal{U}, \mathcal{U})$ -locale. A large and locally small locale is a $(\mathcal{U}^{+}, \mathcal{U}, \mathcal{U})$ -locale.

Impredicatively, one works with small locales.

Theorem (de Jong and Escardó [\[6\]](#page-62-0) [\[5\]](#page-62-1))

The existence of a nontrivial small locale implies a form of propositional resizing.

Notions of size for locales

The generality of $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locales is **almost never** needed.

Definition

A small locale is a $(\mathcal{U}, \mathcal{U}, \mathcal{U})$ -locale. A large and locally small locale is a $(\mathcal{U}^{+}, \mathcal{U}, \mathcal{U})$ -locale.

Impredicatively, one works with small locales.

Theorem (de Jong and Escardó [\[6\]](#page-62-0) [\[5\]](#page-62-1))

The existence of a nontrivial small locale implies a form of propositional resizing.

Most locales that arise in practice in our setting are *large and locally small*.

Bases for locales

Definition (Basis)

A *W*-family ${B_i}_{i:I}$ over a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X is said to form a basis for *X* if

for any *U* : $\mathcal{O}(X)$, there is a *subfamily* ${B_l}_{l \in L}$ of ${B_l}_{i \in L}$ such that $U = \bigvee_{l \in L} B_l$.

Note that a locale basis can be assumed WLOG to be directed.

Bases for locales

Definition (Basis)

A *W*-family ${B_i}_{i:I}$ over a $(\mathcal{U}, \mathcal{V}, \mathcal{W})$ -locale X is said to form a basis for *X* if

for any *U* : $\mathcal{O}(X)$, there is a *subfamily* ${B_l}_{l \in L}$ of ${B_l}_{i \in L}$ such that $U = \bigvee_{l \in L} B_l$.

Note that a locale basis can be assumed WLOG to be directed.

In our work, we focus on:

large and locally small frames with small bases.

A nucleus on frame *L* is an endofunction $j : |L| \rightarrow |L|$ that is inflationary, idempotent, and preserves binary meets.

A nucleus is called Scott-continuous if it preserves joins of directed families.

Patch is the frame of Scott-continuous nuclei.

Previous work [\[3\]](#page-61-0) exploited the fact that Patch is a subframe of the frame of all nuclei.

Joins in the frame of *all* nuclei (1)

Consider a locale *X* and let $j, k : \mathcal{O}(X) \to \mathcal{O}(X)$ be two nuclei.

 $\mathsf{Ordering: } j \preceq k \vcentcolon\equiv \prod_{\mathsf{U}: \mathcal{O}(\mathsf{X})} j(\mathsf{U}) \leq k(\mathsf{U})$

Top element: $\mathbf{1} := U \mapsto \mathbf{1}_X$.

Binary meets: $j \wedge k := U \mapsto j(U) \wedge k(U)$.

Joins in the frame of *all* nuclei (1)

Consider a locale *X* and let *j*, $k : \mathcal{O}(X) \to \mathcal{O}(X)$ be two nuclei.

 $\mathsf{Ordering: } j \preceq k \vcentcolon\equiv \prod_{\mathsf{U}: \mathcal{O}(\mathsf{X})} j(\mathsf{U}) \leq k(\mathsf{U})$

Top element: $\mathbf{1} := U \mapsto \mathbf{1}_X$.

Binary meets: $j \wedge k := U \mapsto j(U) \wedge k(U)$.

Unfortunately, the pointwise join fails to be idempotent in general.

Joins in the frame of *all* nuclei (2)

It is possible to construct the joins in the frame of all nuclei impredicatively.

Previous constructions include those by

- \triangleright Simmons [\[7\]](#page-63-0).
- ▶ Banaschewski [\[1\]](#page-61-1),
- ▶ Johnstone [\[4\]](#page-61-2).
- ▶ Wilson [\[8\]](#page-63-1), and
- \blacktriangleright Escardó [\[2\]](#page-61-3).

Joins in the frame of *all* nuclei (2)

It is possible to construct the joins in the frame of all nuclei impredicatively.

Previous constructions include those by

- \triangleright Simmons [\[7\]](#page-63-0),
- ▶ Banaschewski [\[1\]](#page-61-1),
- ▶ Johnstone [\[4\]](#page-61-2).
- ▶ Wilson [\[8\]](#page-63-1), and
- \blacktriangleright Escardó [\[2\]](#page-61-3).

All of these use some form of impredicativity. Moreover, we are not aware of any predicative construction of the frame of all nuclei.

The frame of Scott-continuous nuclei in type theory?

Question

Can this patch construction be shown to be the coreflector in the predicative setting of univalent type theory?

The frame of Scott-continuous nuclei in type theory?

Question

Can this patch construction be shown to be the coreflector in the predicative setting of univalent type theory?

Our answer: **Yes**, if one considers large and locally small frames with small bases.

Let $K := \{k_i\}_{i \in I}$ be a family of nuclei.

Finite compositions of nuclei

Denote by K^* the family of all finite compositions of k_i 's:

 $K^* := (\textsf{List}(I), \beta)$

 $\mathsf{where} \ \beta(i_0,\ldots,i_{n-1}) \vcentcolon\equiv k_{i_{n-1}} \circ \cdots \circ k_{i_0}.$

Proposition

The family *K* ∗ is always directed.

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

=

=

=

$$
\left(\bigvee_{i:I}k_i\right)\left(\bigvee_{i:I}k_i\right)(U)\quad\equiv\quad
$$

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

$$
\left(\bigvee_{i:I}k_i\right)\left(\bigvee_{i:I}k_i\right)(U)\quad\equiv\quad \left(\bigvee_{i:I}k_i\right)\left(\bigvee_{l_1\in K^*}l_1(U)\right)
$$

=

=

=

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

$$
\left(\bigvee_{i:I} k_i\right) \left(\bigvee_{i:I} k_i\right) (U) \equiv \left(\bigvee_{i:I} k_i\right) \left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l_2 \in K^*} l_2 \left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

=

=

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

$$
\left(\bigvee_{i:I} k_i\right)\left(\bigvee_{i:I} k_i\right)(U) \equiv \left(\bigvee_{i:I} k_i\right)\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l_2 \in K^*} l_2\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l_2 \in K^*} \bigvee_{l_1 \in K^*} l_2(l_1(U))
$$

$$
=
$$

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

$$
\left(\bigvee_{i:I} k_i\right)\left(\bigvee_{i:I} k_i\right)(U) \equiv \left(\bigvee_{i:I} k_i\right)\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l_2 \in K^*} l_2\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l_2 \in K^*} l_1\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

$$
= \bigvee_{l \in K^*} l(U)
$$

When only the Scott-continuous nuclei are considered, however, this join exists predicatively!

Let $K := \{k_i\}_{i \in I}$ be a family of Scott-continuous nuclei on locale *X* and let $U: \mathcal{O}(X)$.

$$
\left(\bigvee_{i:I} k_i\right)\left(\bigvee_{i:I} k_i\right)(U) = \left(\bigvee_{i:I} k_i\right)\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

\n
$$
= \bigvee_{l_2 \in K^*} l_2\left(\bigvee_{l_1 \in K^*} l_1(U)\right)
$$

\n
$$
= \bigvee_{l_2 \in K^*} l_2(l_1(U))
$$

\n
$$
= \bigvee_{l \in K^*} l(l)
$$

\n
$$
= \left(\bigvee_{i:I} k_i\right)(U)
$$

Compactness

Definition (Compact open)

Let $U: \mathcal{O}(X)$ be an open of some locale X. The open U is called compact if

$$
U \leq \bigvee_{i:I} V_i \to \exists k:I.\ U \leq V_k
$$

for every *directed* family of opens $\{V_i\}$: Fam_W ($\mathcal{O}(X)$).

Definition (Compact locale)

A locale *X* is called compact if its top open is compact.

The type-theoretical construction of Patch

Recall the definition of a spectral locale: *a locale in which the compact opens form a basis closed under finite meets.*

One can predicatively construct the patch locale on an arbitrary locale.

The type-theoretical construction of Patch

Recall the definition of a spectral locale: *a locale in which the compact opens form a basis closed under finite meets.*

One can predicatively construct the patch locale on an arbitrary locale.

The need for a small basis arises in multiple places:

- \triangleright to ensure that Patch is locally small,
- \triangleright to ensure the existence of open nuclei (to be explained later).

Ordering on nuclei – *size matters*

Let

- ▶ *X* be a large and locally small locale, and
- ▶ *j* and *k* be two Scott-continuous nuclei on *X*.

 $\mathsf{Define}\ j\preceq k :\equiv \prod_{U:\mathcal{O}(X)}j(U)\leq k(U).$

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch (X) is a $(\mathcal{U}^+, \mathcal{U}^+, \mathcal{U})$ -locale i.e. it is *not* locally small.

Ordering on nuclei – *size matters*

Let

- ▶ *X* be a large and locally small locale, and
- ▶ *j* and *k* be two Scott-continuous nuclei on *X*.

 $\mathsf{Define}\ j\preceq k :\equiv \prod_{U:\mathcal{O}(X)}j(U)\leq k(U).$

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch (X) is a $(\mathcal{U}^+, \mathcal{U}^+, \mathcal{U})$ -locale i.e. it is *not* locally small.

Solution: we *could* quantify over a small family of compact opens:

Ordering on nuclei – *size matters*

Let

- ▶ *X* be a large and locally small locale, and
- ▶ *j* and *k* be two Scott-continuous nuclei on *X*.

 $\mathsf{Define}\ j\preceq k :\equiv \prod_{U:\mathcal{O}(X)}j(U)\leq k(U).$

Problem: $j \leq k$ lives in universe \mathcal{U}^+ .

This means Patch (X) is a $(\mathcal{U}^+, \mathcal{U}^+, \mathcal{U})$ -locale i.e. it is *not* locally small.

Solution: we *could* quantify over a small family of compact opens:

Definition $j \preceq_S k := \prod_{C: \mathcal{K}(X)} j(C) \leq k(C)$

We embed the opens of *X* into Patch(*X*) using the closed and open nuclei.

- ▶ Open nucleus induced by *U*:
	- Represents the open subspace corresponding to *U*;
	- Defined as $\neg' U' := V \mapsto U \Rightarrow V$.
- \blacktriangleright Closed nucleus induced by U ,
	- Represents the closed subspace corresponding to the complement of *U*;
	- ▶ Defined as $'U' := V \mapsto U \vee V$.

We embed the opens of *X* into Patch(*X*) using the closed and open nuclei.

- ▶ Open nucleus induced by *U*:
	- Represents the open subspace corresponding to *U*;
	- Defined as $\neg' U := V \mapsto U \Rightarrow V$. *Heyting implication*

- ▶ Closed nucleus induced by *U*,
	- Represents the closed subspace corresponding to the complement of *U*;
	- Defined as ' $U' := V \mapsto U \vee V$.

We embed the opens of *X* into Patch(*X*) using the closed and open nuclei.

- ▶ Open nucleus induced by *U*:
	- Represents the open subspace corresponding to *U*;
	- ▶ Defined as ¬'*U*' :≡ *V* 7→ *U*⇒*V*. *Heyting implication*

- ▶ Closed nucleus induced by *U*,
	- Represents the closed subspace corresponding to the complement of *U*;
	- Defined as ' $U' := V \mapsto U \vee V$.

Heyting implication is defined using the Adjoint Functor Theorem which amounts to the definition:

$$
U \Rightarrow V := \bigvee \{W : \mathcal{O}(X) \mid W \wedge U \leq V\}.
$$

We embed the opens of *X* into Patch(*X*) using the closed and open nuclei.

- ▶ Open nucleus induced by *U*:
	- Represents the open subspace corresponding to *U*;
	- Defined as $\neg' U := V \mapsto U \Rightarrow V$. *Heyting implication*

- ▶ Closed nucleus induced by *U*,
	- Represents the closed subspace corresponding to the complement of *U*;
	- Defined as ' $U' := V \mapsto U \vee V$.

Heyting implication is defined using the Adjoint Functor Theorem which amounts to the definition:

$$
U \Rightarrow V := \bigvee \{W : \mathcal{O}(X) \mid W \wedge U \leq V\}.
$$

Problem: This join, however, is not small. **Solution**: We *could* quantify over a small family of compact opens.

Spectrality revisited (1)

To solve these problems, we start with a spectral locale *X* assumed to

- \triangleright be large and locally small;
- \triangleright have a small basis consisting of compact opens.

Spectrality revisited (1)

To solve these problems, we start with a spectral locale *X* assumed to

- \triangleright be large and locally small;
- \triangleright have a small basis consisting of compact opens.

We simply say spectral locale with a small basis to refer to these assumptions.

Spectrality revisited (1)

To solve these problems, we start with a spectral locale *X* assumed to

- \triangleright be large and locally small;
- \triangleright have a small basis consisting of compact opens.

We simply say spectral locale with a small basis to refer to these assumptions.

We make exactly the same assumptions for zero-dimensionality, involved in the definition of a Stone locale.

Spectrality revisited (2)

Proposition

In any spectral locale with small basis, any compact open falls in the basis.

Spectrality revisited (2)

Proposition

In any spectral locale with small basis, any compact open falls in the basis.

Proof

- \blacktriangleright Let $C: \mathcal{O}(X)$ be a compact open.
- ▶ *C* = $\bigvee_{l \in L} B_l$ for some basic covering family $\{B_l\}_{l \in L}$.
- ▶ By compactness, there exists an index *k* ∈ *L* such that $C \leq B_k$.
- ▶ Clearly, B_k < *C* which means B_k = *C*.

Spectrality revisited (3)

We can do better! Let X be a spectral locale with small basis $\{\pmb{\mathcal{B}}_i\}_{i:I}.$

Theorem

There is an isomorphism

$$
\left(\Sigma_{U:\mathcal{O}(X)}\exists_{i:I}U=B_i\right) \quad \simeq \quad \Sigma_{U:\mathcal{O}(X)} \text{ is-compact-open}(U).
$$

Proposition

 $\mathsf{Assuming\,the\,existence\,of\,quotients,\,the\,type\,\Sigma_{U:\mathcal{O}(X)}\exists_{i:I}\mathcal{U}=\mathcal{B}_i\text{ is}}$ U -small.

Corollary

The type of compact opens of X is U -small.

Patch is Stone

Theorem

Given a spectral locale *A* with small basis {*Bi*}*i*:*^I* , Patch(*A*) is a Stone locale (with a small basis consisting of clopens).

Proof sketch

The family

$$
\{ {}^{\prime}B_m \prime \wedge \neg {}^{\prime}B_n \prime \mid m,n:I \}
$$

forms a basis for Patch(*A*) and the covering subfamily for a given Scott-continuous nucleus $j: \mathcal{O}(X) \to \mathcal{O}(X)$ is given by

$$
\{B_m'\wedge\neg B_n'\mid B_m\leq j(B_n),m,n:I\}.
$$

The universal property of Patch

Let *A* and *X* be, respectively, a spectral and a Stone locale with small bases. Denote by {*Bi*}*ⁱ*:*^I* the small basis of *A*.

The universal property of Patch

Let *A* and *X* be, respectively, a spectral and a Stone locale with small bases. Denote by {*Bi*}*ⁱ*:*^I* the small basis of *A*.

$$
\overline{f}^* : \mathcal{O}(\mathsf{Patch}(A)) \to \mathcal{O}(X) \overline{f}^* := j \mapsto \bigvee_{m,n:I} \{f^*(B_m) \wedge \neg f^*(B_n) \mid B_m \leq j(B_n)\}
$$

Summary

We set out to implement a predicative version of an impredicative construction from pointfree topology in univalent type theory.

Doing this predicatively turned out to involve surprising challenges.

We had to reformulate quite a few things in the theory itself to obtain a type-theoretic understanding of the construction in consideration.

I have almost completely formalised our work in the Agda proof assistant, as part of Escardó's TypeTopology [\[0\]](#page-61-4) library.

References I

- [1] Bernhard Banaschewski. "Another look at the localic Tychonoff theorem". In: *Commentationes Mathematicae Universitatis Carolinae* 29.4 (1988), pp. 647–656.
- [2] Martín H. Escardó. "Joins in the frame of nuclei". In: *Applied Categorical Structures* 11.2 (2003), pp. 117–124.
- [3] Martín H. Escardó. "On the Compact-regular Coreflection of a Stably Compact Locale". In: *Electronic Notes in Theoretical Computer Science* 20 (1999), pp. 213–228. ISSN: 15710661. DOI: [10.1016/S1571-0661\(04\)80076-8](https://doi.org/10.1016/S1571-0661(04)80076-8).
- [0] Martín H. Escardó and contributors. *TypeTopology*. Agda development. URL: <https://github.com/martinescardo/TypeTopology>.
- [4] Peter T. Johnstone. "Two notes on nuclei". In: *Order* 7 (1990), pp. 205–210.

References II

- [5] Tom de Jong. "Domain Theory in Constructive and Predicative Univalent Foundations". PhD thesis. University of Birmingham, 2023.
- [6] Tom de Jong and Martín Hötzel Escardó. In: *6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)*. Ed. by Naoki Kobayashi. Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 8:1–8:18. ISBN: 978-3-95977-191-7. DOI:

[10.4230/LIPIcs.FSCD.2021.8](https://doi.org/10.4230/LIPIcs.FSCD.2021.8). URL:

<https://drops.dagstuhl.de/opus/volltexte/2021/14246>.

References III

- [7] Harold Simmons. "An algebraic version of Cantor-Bendixson analysis". In: *Categorical Aspects of Topology and Analysis: Proceedings of an International Conference Held at Carleton University, Ottawa, August 11–15*. Springer. 1981, pp. 310–323.
- [8] Todd J. Wilson. "The Assembly Tower and Some Categorical and Algebraic Aspects of Frame Theory". PhD thesis. Carnegie Mellon University Pittsburgh, PA, 1994.