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What is Stoneduality?

Stone spaces

Spectral spaces

≃

≃

Boolean algebras

Distributive lattices

→ Stone [Sto36] first discovered this duality in the context of Boolean algebras.
→ He then generalized [Sto37] it to distributive lattices.
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What is Stoneduality?

LetX be a Stone space.

The clopens ofX form a
Boolean algebra.

Let L be aBoolean algebra.

The ultrafilters of L form a
Stone space.

In Stone spaces, the clopens coincidewith the compact opens.
It is really the algebra of compact opens thatmatters!

LetX be a spectral space.

The compact opens ofX form a
distributive lattice.

Let L be a distributive lattice.

The prime filters of L form a
spectral space.
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This talk

Wedevelop the Stone duality between spectral spaces and distributive
lattices in the foundational setting of

univalent type theory,
which is

constructive and predicative
by default.
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Stoneduality and constructivity

Stone duality is classical in a point-set setting.

Taking locales as our notion of space, however, Stone duality can be
carried out in a completely constructiveway.
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What is a locale?

A locale is a notion of space defined
solely by its lattice of opens.

In point-free topology, we do not require that a topology be
a sublattice of the powerset lattice of some set of points.
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Foundations



Notions of size

Definition (V-smallness)
A typeX : U is calledV-small if it has a copy in universeV i.e.

Σ(Y :V)X ≃ Y.

Definition (LocalV-smallness)
A typeX : U is called locallyV-small if the identity type x = y isV-small for every pair of
inhabitants x, y : X.
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Forms of resizing

Definition (Ω)
Wedenote byΩU the type of propositions in universe U .

Definition (Propositional resizing)
The propositional (U ,V)-resizing axiom says that every proposition P : ΩU isV-small.

Definition (Ω-resizing)
TheΩ-(U ,V)-resizing axiom says thatΩU isV-small.
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More on resizing

Proposition
LEM impliesΩ-(U ,V)-resizing for all universes.

Proof sketch

→ If LEMholds, all propositions are decidable i.e.Ω ≃ 2.

→ The type 2 always has a copy in U0.

→ Types in U0 can always be lifted up to any universe.

Predicativemathematics is a branch of constructivemathematics.
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Univalence and the propositionality of being small

Definition (Univalence)
A universe U is called univalent if, for every pair of typesX, Y : U , themap
idtoeqv : X =U Y → X ≃ Y is an equivalence.

Definition (The univalence axiom)
The univalence axiom says that every universe is univalent.

Generalization of Propositions 2.8 and 2.9 of [dJE23]
The following are equivalent:
→ For every typeA : U , the typeexpressing thatA isV-small is aproposition (for everypair of universes

U andV).
→ The univalence axiomholds.
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Basics of point-free topology



Frames inHoTT/UF

Definition (Frame)
A (U ,V,W)-frame consists of
→ a type A : U ,
→ a partial order - ≤ - : A → A → ΩV ,

→ a top element 1 : A,

→ a binarymeet operation - ∧ - : A → A → A,

→ a join operation
∨
_ : FamW(A) → A;

→ satisfying distributivity i.e. x ∧
∨

i : I yi =
∨

i : I x ∧ yi for every x : A andW-family (yi)i:I in A.

Large, locally small, and small-complete frame: (U+, U , U)-frame.
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No-go theorem for complete, small lattices

Curi [Cur10] previously showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and
frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called Generalized
Uniformity Principle (GUP).

de Jong and Escardó gave an analogous result [dJE23] in the style of reverse constructive
mathematics [Ish06].

They show directly that certain results cannot be obtained predicatively, by deriving resizing axioms
from them.
Theorem
If there exists a nontrivial small frame thenΩ-resizing holds.
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The right category of frames

Apredicative investigation of locale theory inHoTT/UFmust focus on large and small-complete frames.

For us, framemeans (U+, U , U)-frame
(over some base universe U ).

FrmU : the category of such frames and frame homomorphisms.
LocU : the opposite of this category.

We denote byO(X) the frame defining a localeX.
A continuousmap f : X → Y of locales is given by a homomorphism f∗ : O(Y) → O(X).
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Base of a locale

Definition (Weakbase)
A family (Bi)i:I of opens forms aweakbase for localeX if

for everyU : O(X), there is an unspecified, directed, small
family (ij)j:J on the base index satisfyingU =

∨
j:J Bij .
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Compact and spectral locales



What is a spectral locale?

Towrite the definition of spectral locale inHoTT/UF, we look it up in a standard textbook…
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Compactness

Definition (Compact open)
An openU : O(X) is called compact if for every directed family (Vi)i:I withU ≤

∨
i:I Vi, there is

some k : I such thatU ≤ Vk.

Same as the “covers have finite subcovers” definition but with Kuratowski finiteness.

We define K+(X) :≡ Σ(U :O(X))is-compact(U).
→ Observe that this type is large i.e. lives in U+.

Definition (Compact locale)
A compact locale is one inwhich the top open 1 is compact.
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Spectral locales inHoTT/UF

Definition (Spectral locale) [Tos25; AET24]
A localeX is called spectral if it satisfies the following conditions:

* (SP1) It is compact (i.e. the emptymeet is compact).

* (SP2) Compact opens are closed under binarymeets.

* (SP3) The type K+(X) forms aweak base.

* (SP4) The type K+(X) is small.

→ A continuousmap f : X → Y is called spectral if f∗(K) is a compact open of Y for every compact
open K ofX.

SpecU : the category of spectral locales and spectralmaps.

Lemma
Univalence implies that being spectral is a proposition.

Univalence seems to be required towrite down
the property expressing themathematical notion in consideration!
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Small distributive lattices

Definition (Small distributive lattice)
A distributive U-lattice consists of

* a set |L| : U ,

* elements 0, 1 : |L|,

* operations - ∧ - : |L| → |L| → |L| and - ∨ - : |L| → |L| → |L|,

* satisfying the laws of associativity, commutativity, unitality, idempotence, and absorption.

DLatU : the category of distributive U-lattices or small distributive lattices.

Definition (Ideal)
A U -ideal of a distributive lattice L is a subset I : L → ΩU satisfying the conditions:

* inhabitedness,

* downward closedness,

* closedness under binary joins.
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Spectrumconstruction: DLatU → SpecU

Lemma
For every distributive U-lattice L, the type IdlU(L) forms a frame i.e. a large, locally
small, and small-complete frame.

Lemma
For every distributive U-lattice L, the frame IdlU(L) is spectral.

The spectrumof L is the locale defined by IdlU(L).
→ Wedenote this by Spec(L).

Observe the following:
→ Classically: weworkwith the ideals L → 2.
→ Constructively but impredicatively: weworkwith the ideals L → Ω.
→ Constructively and predicatively: weworkwith the ideals L → ΩU .
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Small distributive lattice of compact opens: SpecU → DLatU

Recall that the type K+(X) is a priori large— it lives inU+.
→ In other words, it falls in the category DLatU+ and not DLatU .

Condition (SP4) gives us a specified, small typeX0 such that

K+(X) ≃ X0.

Lemma
For everyV-distributive lattice L, if the carrier set |L| is U-small then L has a copy in U i.e. is isomorphic
to a specified U-distributive lattice.

→ We just transport the lattice structure through the equivalence, which is always a lattice
isomorphism.

Lemma
For every spectral localeX, we have a specified, small distributive lattice K(X).
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Predicative Stoneduality—object part

Wehave thus constructedmaps:

SpecU DLatU
K

Spec

Proposition
Assuming univalence (twice), themaps K and Spec form a type equivalence.

→ We thus have an equivalence SpecU ≃ DLatU .
→ Observe that SpecU : U++ andDLatU : U+, but the result says SpecU is U+-small.
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Predicative Stoneduality—morphisms

Recall that a spectralmap is a continuous function
f : X → Y such that

Π(V :O(Y))V is compact → f∗(K) is compact.

This is amapping K+(Y) → K+(X).

We definemaps:

→ K : Hom(X, Y) → Hom(K(Y), K(X))
→ Spec : Hom(K, L) → Hom(Spec(L), Spec(K))

Theorem
The above functors form a categorical equivalence.

O(Y) O(X)

K+(Y) K+(X)

K(Y) K(X)

f∗

pr1

K+(f)

sY

pr1

sXrY

K(f)

rX
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Conclusion and furtherwork

→ We can obtain a predicative form of Stone duality by consideringΩU -valued ideals onU-small
lattices.

→ Alternative to formal topology.
→ This fits well into our investigation of predicative locale theory in the category of
large, locally small, and small-complete locales.

→ Completely formalized in AGDA as part of TYPETOPOLOGY.
→ TODO: Patch of a spectral locale should give the freeBoolean extension of a distributive lattice.

– Constructed in previous work [AET24].
→ TODO: Constructive and predicative Priestley duality.
→ TODO: Spectrumof a commutative ring?
→ TODO: Further investigation of links with Tomde Jong’s doctoral work on domain theory [dJon23].

– Especially through the notion of superspectral locale.
→ AGDA formalization in literate programming style:

– https://martinescardo.github.io/TypeTopology/Locales.StoneDuality.
ForSpectralLocales.html
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