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What is topology?



What is topology?

A topological space is a set X together with a collection Ω(X)
of its subsets such that

• Ω(X) is closed under finite intersections, and
• Ω(X) is closed under arbitrary unions.
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What is topology?

Let P be a program. When run, it prints a sequence of integers.

We observe that its output starts as:

7 11 2 2 8 42 · · ·

We can consider certain properties of P, such as:

“P eventually prints 17”, or

“P prints no more than two 2s”.

Observable Not observable
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What is topology?

“ϕ is an observable property.”

↔

If a program satisfies ϕ, there exists a stage m of the output σ
at which the program is verified to satisfy ϕ: all extensions of

σ|m satisfy ϕ.
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What is topology?

Let ϕ1, · · · , ϕn be a finite number of observable properties.

Suppose ϕ1 ∧ · · · ∧ ϕn holds.

There must be stages m1, · · · ,mn such that ϕk is verified at mk.

ϕ1 ∧ · · · ∧ ϕn must then be verified at max(m1, · · · ,mn).

If ϕ1, · · · , ϕn are observable then so is ϕ1 ∧ · · · ∧ ϕn.
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What is topology?

Let { ψi | i ∈ I } be an arbitrary number of observable properties.

Suppose
∨

i ψi holds.

Some ψi holds meaning it must be verified at some stage m.

∨
i ψi is hence verified at stage m.

If { ψi | i ∈ I } are observable then so is
∨

i ψi.
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What is topology?

Topology is a mathematical theory of
observable properties.1

1as pointed out by Scott [5], Smyth [6], Abramsky [1], Vickers [9], Escardó [2], and Taylor [7], among others. My
presentation here follows specifically Smyth [6].
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Frames



Frames

A frame is a poset O such that

• finite subsets of O have meets,
• arbitrary subsets of O have joins, and
• binary meets distribute over arbitrary joins:

a ∧
(∨

i ∈ I
bi

)
=
∨

i ∈ I
(a ∧ bi) ,

for any a ∈ O and family {bi | i ∈ I} over O.

In type theory, the quantification over arbitrary
subsets is problematic.
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Frames — a prime example

Given a poset

A : Typem

⊑ : A → A → hPropm

the type of downwards-closed subsets of A is:∑
(U : P(A))

∏
(x y : A)

x ∈ U → y ⊑ x → y ∈ U,

where

P : Typem → Typem+1

P(X) :≡ X → hPropm.
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Frames — a prime example

This forms a frame defined as:

⊤ :≡ λ_. Unit
A ∧ B :≡ λx. (x ∈ A)× (x ∈ B)∨
i : I

Bi :≡ λx.

∥∥∥∥∥∥
∑
(i : I)

x ∈ Bi

∥∥∥∥∥∥ .
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Frames — a prime example

Question: can we get any frame out of a poset in this way?

One way is to employ the notion of a nucleus on a frame.

For this, we need to enrich the notion of a poset with a
structure that gives rise to an appropriate nucleus
(on its frame of downwards-closed subsets).

That structure is a formal topology.
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Formal Topology



Formal Topologies — as Interaction Systems

An interaction structure [4] on some type A comprises three
functions:

B : A → Type (1),
C :

∏
(a : A)

B(a) → Type (2), and

d :
∏

(a : A)

∏
(b : B(a))

C(a, b) → A (3).

An interaction system is a type A equipped with an interaction
structure.

11



Formal Topologies — as Interaction Systems

A formal topology is an interaction system (B,C, d) on some
poset P that satisfies the following two conditions.

1. Monotonicity:∏
(a : A)

∏
(b : B(a))

∏
(c : C(a,b))

d(a, b, c) ⊑ a.

2. Simulation:∏
(a′ a : A)

a′ ⊑ a →

∏
(b : B(a))

∑
(b′ : B(a′))

∏
(c′ : C(a′,b′))

∑
(c : C(a,b))

d(a′, b′, c′) ⊑ d(a, b, c).
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Nuclei

A nucleus on a frame F is an endofunction j : |F| → |F| such
that:∏
(x y : |F|)

j (x ∧ y) = j (x) ∧ j (y) [meet preservation],

∏
(x : |F|)

x ⊑ j (x) [inflation], and

∏
(x : |F|)

j (j (x)) ⊑ j (x) [idempotence].

This is a meet-preserving, idempotent monad!
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Nuclei

Let F be a frame, and j : |F| → |F| a nucleus on it.

The set ∑
(x : |F|)

j (x) = x

of fixed points for j is itself a frame:

⊤ :≡ ⊤F

_ ∧ _ :≡ _ ∧F _∨
i

xi :≡ j
( F∨

i
xi

)
.

We denote this fix (F, j).
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Nuclei

A Grothendieck “topology” appears most naturally as
a modal operator, of the nature “it is locally the case
that”.

— Lawvere [3]

In the posetal case, our modality will be the covering relation
induced by the structure of a formal topology.
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The covering nucleus — naive attempt

Let
• F be a formal topology with underlying poset P,
• a : |P|, and
• U : P (|P|), a downwards-closed subset of P.

a � U is inductively defined via two rules.

a ∈ U dir
a � U

b : B(a)
∏

(c : C(a,b)) d(a, b, c)� U
branch

a � U

Notice: a � U is a structure and not a property.
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The covering nucleus — naive attempt

� could be shown to be a nucleus, if it had the type

� : |P| → P (|P|) → hProp
� : P (|P|) → P (|P|) ,

but its type is

� : |P| → P (|P|) → Type.

Idea: use propositional truncation:

∥_ � _∥ : |P| → P (|P|) → hProp
∥_ � _∥ : P (|P|) → P (|P|) .
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The covering nucleus — naive attempt

Need to show: ∥_ � _∥ is a nucleus.

This involves showing it is idempotent:

∥_ � ∥_ � U∥∥ ⊆ ∥_ � U∥ ,

for which we need to prove a lemma stating:

∥a � U∥ ×

 ∏
(u : |P|)

a′ ∈ U → ∥a′ � V∥

→ ∥a � V∥ ,

for every formal topology F with underlying poset P, a : |P|, and

downwards-closed subsets U,V : P (|P|).
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The covering nucleus — naive attempt

In the branch case of an attempted proof, the inductive hypothesis
gives us ∏

(c : C(a,b))
∥d(a, b, c)� V∥ ,

but what we need is:∥∥∥∥∥∥
∏

(c : C(a,b))
d(a, b, c)� V

∥∥∥∥∥∥ .

This inference would require (a form of) the axiom of choice.
In fact, the form of choice needed is provably false [8, Lemma

3.8.5].

19



The covering nucleus — naive attempt

In the branch case of an attempted proof, the inductive hypothesis
gives us ∏

(c : C(a,b))
∥d(a, b, c)� V∥ ,

but what we need is:∥∥∥∥∥∥
∏

(c : C(a,b))
d(a, b, c)� V

∥∥∥∥∥∥ .

This inference would require (a form of) the axiom of choice.
In fact, the form of choice needed is provably false [8, Lemma

3.8.5].

19



The covering nucleus — fixed

As we cannot truncate, we revise the inductive definition of � to
be a higher inductive type.

a ∈ U dir
a � U

b : B(a)
∏

(c : C(a,b)) d(a, b, c)� U
branch

a � U

p : a � U q : a � U
squashp = q

The mentioned lemma is now provable without
choice and the type is propositional!
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Generating frames from formal topologies

1. Start with formal topology F with underlying poset P.
2. Take the frame of downwards-closed subsets of P,

denoted P ↓.
3. � : P ↓→ P ↓ is a nucleus.
4. The generated frame is the frame of fixed points of this

nucleus (denoted fix (P ↓,�)).
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Formal topologies present



Flat monotonic maps

To state the presentation theorem, we will have to talk about
meet-preserving monotonic maps.

However, we are working with posets which may or may not have
meets.

The solution is to consider those monotonic maps preserving latent
meets: these are called flat monotonic maps.

Let f : P → F be a monotonic map from a poset P to the
underlying poset of a frame F. We say that it is flat if:

⊤F =
∨

{f(a) | a : |P|}, and∏
(a0 a1 : |P|)

f(a0) ∧ f(a1) =
∨

{f(a2) | a2 ⊑ a0 and a2 ⊑ a1}.
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Representation

Let

• F be a formal topology,
• R, a frame, and
• f : |F| → |R|, a function.

We say that f represents F in R if:∏
(a : A)

∏
(b : B(a))

f(a) ⊑
∨

c:C(a,b)
f(d(a, b, c)).
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The main theorem

Theorem. Given

• a formal topology F with underlying poset P,
• a frame R, and
• a flat monotonic map f : P → R;

if f represents F in R, then there exists a unique frame
homomorphism g making the following diagram commute:

P fix (P ↓,�)

R

f

η

g

where η(a) :≡ _ � {a′ | a′ ⊑ a}.
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Conclusion



Conclusion

In summary, this thesis development features:

• a reconstruction of the notion of covering within the univalent
doctrine as an HIT,

• a sketch of the beginnings of an approach for carrying out
formal topology in univalent type theory, and

• no postulates, no impredicativity (everything typechecks with
safe); no setoids either.
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Further work

• Develop more topology using this approach!
• What is the category of formal topologies?
• How can the presentation theorem be stated as an adjunction?
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