
Inductive Continuity via Brouwer Trees

Liron Cohen 1 Bruno da Rocha Paiva 2 Vincent Rahli 2

Ayberk Tosun 2

1Ben-Gurion University, Beer-Sheva, Israel

2University of Birmingham, UK

29 August 2023
MFCS 2023

Bordeaux, France

1 / 21

The Continuity Principle (1)

One cannot define a discontinuous function on the
reals by computational means.

The computational content of such a function
would involve transcending the infinity of time.

The continuity principle is the embodiment of this
fact in foundations of constructive mathematics.

2 / 21

The Continuity Principle (1)

One cannot define a discontinuous function on the
reals by computational means.

The computational content of such a function
would involve transcending the infinity of time.

The continuity principle is the embodiment of this
fact in foundations of constructive mathematics.

2 / 21

The Continuity Principle (1)

One cannot define a discontinuous function on the
reals by computational means.

The computational content of such a function
would involve transcending the infinity of time.

The continuity principle is the embodiment of this
fact in foundations of constructive mathematics.

2 / 21

The Continuity Principle (2)

Define the Baire space: B :≡ N → N.

Consider a function F : B → N.

Conceptually, what we mean by the “continuity of F ” is:

any result F (α) computed by F is determined by a finite
amount of information obtained from the input α.

3 / 21

The Continuity Principle (2)

Define the Baire space: B :≡ N → N.

Consider a function F : B → N.

Conceptually, what we mean by the “continuity of F ” is:

any result F (α) computed by F is determined by a finite
amount of information obtained from the input α.

3 / 21

The Continuity Principle (2)

Define the Baire space: B :≡ N → N.

Consider a function F : B → N.

Conceptually, what we mean by the “continuity of F ” is:

any result F (α) computed by F is determined by a finite
amount of information obtained from the input α.

3 / 21

Our contribution

We develop the first internalisation of a certain strong form of the
continuity principle inside the type theory TT□

C [CR22; CR23].

More specifically,
▶ we construct a program in TT□

C that realises the inductive
continuity principle,

▶ that uses references to compute Brouwer trees.

4 / 21

Our contribution

We develop the first internalisation of a certain strong form of the
continuity principle inside the type theory TT□

C [CR22; CR23].

More specifically,
▶ we construct a program in TT□

C that realises the inductive
continuity principle,

▶ that uses references to compute Brouwer trees.

4 / 21

Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).

5 / 21

Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).

5 / 21

Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).

5 / 21

Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).

5 / 21

Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).

5 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.

▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).

▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.
▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).

▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.
▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).

▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.
▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).
▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).

▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.
▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).
▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.
▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).
▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .

6 / 21

The Inductive Continuity Principle

The Inductive Continuity Principle (ICP) says

For any function F : B → N, there is a Brouwer tree t
such that for each α : B, the path of t along α encodes the
computation F (α).

▶ Goes back to Brouwer in intuitionistic mathematics and Kleene
in classical computability theory.

▶ First explicitly studied1 by Ghani, Hancock, and
Pattinson [GHP06].

▶ Implies both Cont and UCP.

1as far as the authors are aware.
7 / 21

The Inductive Continuity Principle

The Inductive Continuity Principle (ICP) says

For any function F : B → N, there is a Brouwer tree t
such that for each α : B, the path of t along α encodes the
computation F (α).

▶ Goes back to Brouwer in intuitionistic mathematics and Kleene
in classical computability theory.

▶ First explicitly studied1 by Ghani, Hancock, and
Pattinson [GHP06].

▶ Implies both Cont and UCP.

1as far as the authors are aware.
7 / 21

The Inductive Continuity Principle

The Inductive Continuity Principle (ICP) says

For any function F : B → N, there is a Brouwer tree t
such that for each α : B, the path of t along α encodes the
computation F (α).

▶ Goes back to Brouwer in intuitionistic mathematics and Kleene
in classical computability theory.

▶ First explicitly studied1 by Ghani, Hancock, and
Pattinson [GHP06].

▶ Implies both Cont and UCP.

1as far as the authors are aware.
7 / 21

The Inductive Continuity Principle

The Inductive Continuity Principle (ICP) says

For any function F : B → N, there is a Brouwer tree t
such that for each α : B, the path of t along α encodes the
computation F (α).

▶ Goes back to Brouwer in intuitionistic mathematics and Kleene
in classical computability theory.

▶ First explicitly studied1 by Ghani, Hancock, and
Pattinson [GHP06].

▶ Implies both Cont and UCP.

1as far as the authors are aware.
7 / 21

Previous work

▶ Longley [Lon99] pioneered the idea of using effects to compute
moduli of continuity.

▶ Coquand and Jaber [CJ12] proved that MLTT-definable functions on
the Cantor space are uniformly continuous using forcing.

▶ Rahli and Bickford [RB18] applied Longley’s method to
(computational) type theory.

▶ Ghani, Hancock, and Pattinson [GHP06] started the study of ICP.

▶ Escardó [Esc13] used a dialogue tree translation for computing
moduli of continuity of System T-definable functions.

▶ Baillon, Mahboubi, and Pédrot [BMP22] externally validated a
continuity principle for a simple intensional type theory with
restricted dependent elimination.

8 / 21

The computational system TT□
C (1)

To internalise ICP, we work in the system TT□
C [CR22; CR23]:

An effectful, extensional type theory.

▶ TT□
C is more general than we need here.

▶ For the purposes of our work: it is a computational type theory
equipped with mutable references.

9 / 21

The computational system TT□
C (1)

To internalise ICP, we work in the system TT□
C [CR22; CR23]:

An effectful, extensional type theory.

▶ TT□
C is more general than we need here.

▶ For the purposes of our work: it is a computational type theory
equipped with mutable references.

9 / 21

The computational system TT□
C (1)

To internalise ICP, we work in the system TT□
C [CR22; CR23]:

An effectful, extensional type theory.

▶ TT□
C is more general than we need here.

▶ For the purposes of our work: it is a computational type theory
equipped with mutable references.

9 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.

10 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.

10 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.

10 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.

10 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].

▶ Typing is extrinsic.

10 / 21

The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.

10 / 21

Implementing ICP in TT□
C (1)

Our TT□
C program, expressed in OCaml2.

type baire = nat -> nat

type brouwer_tree = Leaf of nat | Branch of (nat -> brouwer_tree)

let m : nat ref = ref 0

let generic (ns : nat list) : nat -> nat = fun i ->
m := max i !m;
if i >= List.length ns then 0 else List.nth ns i

let compute_btree (f : baire -> nat) : brouwer_tree =
let rec loop (ns : nat list) : brouwer_tree =

let i = f (generic ns) in
if !m < List.length ns then

Leaf i
else

Branch (fun n -> loop (ns @ [n]))
in loop []

2Our presentation of the program here follows Sterling [Ste21].
11 / 21

Implementing ICP in TT□
C (2)

We can now define the function follow that decodes the
computation encoded by the path given by α.

let follow (alpha : baire) : brouwer_tree -> nat =
let rec loop (n : nat) (t : brouwer_tree) : nat =
match t with
| Leaf k -> k
| Branch phi -> loop (1 + n) (phi (alpha n))

in loop 0

The modulus at α is then just the depth of the path given by α.

let modulus_at (alpha : baire) : brouwer_tree -> nat =
let rec loop (n : nat) (t : brouwer_tree) : nat =
match t with
| Leaf _ -> n
| Branch phi -> loop (1 + n) (phi (alpha n))

in loop 0

12 / 21

An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.

▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree
and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.

▶ Step 3: Existence of an infinite path contradicts the continuity of
F .

▶ Step 4: In the case where all the branches of t are finite, we
transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).

13 / 21

An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.
▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree

and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.

▶ Step 3: Existence of an infinite path contradicts the continuity of
F .

▶ Step 4: In the case where all the branches of t are finite, we
transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).

13 / 21

An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.
▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree

and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.
▶ Step 3: Existence of an infinite path contradicts the continuity of

F .

▶ Step 4: In the case where all the branches of t are finite, we
transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).

13 / 21

An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.
▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree

and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.
▶ Step 3: Existence of an infinite path contradicts the continuity of

F .
▶ Step 4: In the case where all the branches of t are finite, we

transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).

13 / 21

An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.
▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree

and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.
▶ Step 3: Existence of an infinite path contradicts the continuity of

F .
▶ Step 4: In the case where all the branches of t are finite, we

transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).

13 / 21

Deriving UCP

Brouwer proved [Bee80; Bro27] that all real-valued functions on the
unit interval are uniformly continuous using Cont and his Fan
Theorem, which he derived from his Bar Thesis.

In our case, ICP is strong enough to give UCP without the Fan
Theorem.

Key idea: if B → Nat is restricted to C → Nat, the modulus of
uniform continuity is the depth of the longest path, which can be
computed independently of the input.

14 / 21

Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:

▶ Can we generalise references to more general effects?
▶ We have not yet shown that Cont is strictly weaker than ICP.
▶ Big question: can we make this (or possibly a different) program

work for all TT□
C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21

https://github.com/vrahli/opentt

Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:

▶ Can we generalise references to more general effects?
▶ We have not yet shown that Cont is strictly weaker than ICP.
▶ Big question: can we make this (or possibly a different) program

work for all TT□
C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21

https://github.com/vrahli/opentt

Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:
▶ Can we generalise references to more general effects?

▶ We have not yet shown that Cont is strictly weaker than ICP.
▶ Big question: can we make this (or possibly a different) program

work for all TT□
C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21

https://github.com/vrahli/opentt

Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:
▶ Can we generalise references to more general effects?
▶ We have not yet shown that Cont is strictly weaker than ICP.

▶ Big question: can we make this (or possibly a different) program
work for all TT□

C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21

https://github.com/vrahli/opentt

Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:
▶ Can we generalise references to more general effects?
▶ We have not yet shown that Cont is strictly weaker than ICP.
▶ Big question: can we make this (or possibly a different) program

work for all TT□
C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21

https://github.com/vrahli/opentt

References I

[Bee80] Michael J. Beeson. Foundations of Constructive
Mathematics. Berlin, Heidelberg: Springer Verlag, 1980.

[BMP22] Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot.
“Gardening with the Pythia A Model of Continuity in a
Dependent Setting”. In: ed. by Florin Manea and
Alex Simpson. Vol. 216. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, 5:1–5:18. DOI:
10.4230/LIPIcs.CSL.2022.5. URL:
https://doi.org/10.4230/LIPIcs.CSL.2022.5.

[Bro27] Luitzen E. J. Brouwer. “Über Definitionsbereiche von
Funktionen”. In: Mathematische annalen 97 (1927),
pp. 60–75.

16 / 21

https://doi.org/10.4230/LIPIcs.CSL.2022.5
https://doi.org/10.4230/LIPIcs.CSL.2022.5

References II

[CJ12] Thierry Coquand and Guilhem Jaber. “A Computational
Interpretation of Forcing in Type Theory”. In:
Epistemology versus Ontology. Ed. by Peter Dybjer et al.
Vol. 27. Logic, Epistemology, and the Unity of Science.
Springer Netherlands, 2012, pp. 203–213. ISBN:
978-94-007-4434-9.

[Con02] Robert L. Constable. “Naïve Computational Type Theory”.
In: Proof and System-Reliability. Ed. by
Helmut Schwichtenberg and Ralf Steinbrüggen.
Dordrecht: Springer Netherlands, 2002, pp. 213–259. ISBN:
978-94-010-0413-8. DOI:
10.1007/978-94-010-0413-8_7. URL:
https://doi.org/10.1007/978-94-010-0413-8_7.

17 / 21

https://doi.org/10.1007/978-94-010-0413-8_7
https://doi.org/10.1007/978-94-010-0413-8_7

References III

[CR22] Liron Cohen and Vincent Rahli. “Constructing
Unprejudiced Extensional Type Theories with Choices via
Modalities”. In: 7th International Conference on Formal
Structures for Computation and Deduction (FSCD 2022).
Ed. by Amy P. Felty. Vol. 228. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
10:1–10:23. ISBN: 978-3-95977-233-4. DOI:
10.4230/LIPIcs.FSCD.2022.10. URL: https:
//drops.dagstuhl.de/opus/volltexte/2022/16291.

[CR23] Liron Cohen and Vincent Rahli. TT□C : a Family of
Extensional Type Theories with Effectful Realizers of
Continuity. 2023. arXiv: 2307.14168 [cs.LO].

18 / 21

https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://drops.dagstuhl.de/opus/volltexte/2022/16291
https://drops.dagstuhl.de/opus/volltexte/2022/16291
https://arxiv.org/abs/2307.14168

References IV

[Esc13] Martín H. Escardó. “Continuity of Gödel’s System T
Definable Functionals via Effectful Forcing”. In: Electronic
Notes in Theoretical Computer Science. Vol. 298. Elsevier
Science Publishers B. V., 2013, pp. 119–141.

[GHP06] Neil Ghani, Peter G. Hancock, and Dirk Pattinson.
“Continuous Functions on Final Coalgebras”. In: CMCS.
Ed. by Neil Ghani and John Power. Vol. 164. Electronic
Notes in Theoretical Computer Science 1. Elsevier Science
Publishers B. V., 2006, pp. 141–155. DOI:
10.1016/j.entcs.2006.06.009. URL:
https://doi.org/10.1016/j.entcs.2006.06.009.

19 / 21

https://doi.org/10.1016/j.entcs.2006.06.009
https://doi.org/10.1016/j.entcs.2006.06.009

References V

[Lon99] John Longley. “When is a Functional Program Not a
Functional Program?” In: Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional
Programming. ICFP ’99. Paris, France: Association for
Computing Machinery, 1999, pp. 1–7. ISBN: 1581131119. DOI:
10.1145/317636.317775. URL:
https://doi.org/10.1145/317636.317775.

[RB18] Vincent Rahli and Mark Bickford. “Validating Brouwer’s
continuity principle for numbers using named
exceptions”. In: Mathematical Structures in Computer
Science 28.6 (2018), pp. 942–990. DOI:
10.1017/S0960129517000172.

20 / 21

https://doi.org/10.1145/317636.317775
https://doi.org/10.1145/317636.317775
https://doi.org/10.1017/S0960129517000172

References VI

[Ste21] Jonathan Sterling. “Higher order functions and Brouwer’s
thesis”. In: Journal of Functional Programming 31 (2021).
Bob Harper Festschri� Collection, e11. DOI:
10.1017/S0956796821000095. arXiv: 1608.03814
[math.LO].

21 / 21

https://doi.org/10.1017/S0956796821000095
https://arxiv.org/abs/1608.03814
https://arxiv.org/abs/1608.03814

	References

