
Inductive Continuity via Brouwer Trees

Liron Cohen 1 Bruno da Rocha Paiva 2 Vincent Rahli 2

Ayberk Tosun 2

1Ben-Gurion University, Beer-Sheva, Israel

2University of Birmingham, UK

29 August 2023
MFCS 2023

Bordeaux, France

1 / 21



The Continuity Principle (1)

One cannot define a discontinuous function on the
reals by computational means.

The computational content of such a function
would involve transcending the infinity of time.

The continuity principle is the embodiment of this
fact in foundations of constructive mathematics.
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The Continuity Principle (2)

Define the Baire space: B :≡ N → N.

Consider a function F : B → N.

Conceptually, what we mean by the “continuity of F ” is:

any result F (α) computed by F is determined by a finite
amount of information obtained from the input α.
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Our contribution

We develop the first internalisation of a certain strong form of the
continuity principle inside the type theory TT□

C [CR22; CR23].

More specifically,
▶ we construct a program in TT□

C that realises the inductive
continuity principle,

▶ that uses references to compute Brouwer trees.
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Forms of the continuity principle

Different forms of the continuity principle capture
continuity to varying levels of strictness.

Define B :≡ N → N; C :≡ N → Bool.

Continuity Principle (Cont):
▶ ∀F : B → N. ∀α : B. ∃n : N. ∀β : B. α =n β → F (α) = F (β).

Uniform Continuity Principle (UCP):
▶ ∀F : C → N. ∃n : N. ∀α, β : C. α =n β → F (α) = F (β).

Inductive Continuity Principle (ICP):
▶ For any F : B → N, and any α : B, there is a Brouwer tree whose

path at α encodes the computation F (α).
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Brouwer trees

Our construction uses Escardó’s technique [Esc13] of capturing
continuity information using dialogue trees.

▶ Except, instead of dialogue trees we use Brouwer trees.

Consider the computation F :≡ λα. α(2).

▶ For input {0, 1, 2, . . .}, it gives 2 (marked green).
▶ For input {0, 0, 0, . . .}, it gives 0 (marked red).

2

0 1 2
...0 1 2

0 1 2

...0 1 2

...
0 1 2

...

...0

0

1 2

1 2

0 1 2

Figure: Dialogue and Brouwer tree encodings of the computation F .
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The Inductive Continuity Principle

The Inductive Continuity Principle (ICP) says

For any function F : B → N, there is a Brouwer tree t
such that for each α : B, the path of t along α encodes the
computation F (α).

▶ Goes back to Brouwer in intuitionistic mathematics and Kleene
in classical computability theory.

▶ First explicitly studied1 by Ghani, Hancock, and
Pattinson [GHP06].

▶ Implies both Cont and UCP.

1as far as the authors are aware.
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Previous work

▶ Longley [Lon99] pioneered the idea of using effects to compute
moduli of continuity.

▶ Coquand and Jaber [CJ12] proved that MLTT-definable functions on
the Cantor space are uniformly continuous using forcing.

▶ Rahli and Bickford [RB18] applied Longley’s method to
(computational) type theory.

▶ Ghani, Hancock, and Pattinson [GHP06] started the study of ICP.

▶ Escardó [Esc13] used a dialogue tree translation for computing
moduli of continuity of System T-definable functions.

▶ Baillon, Mahboubi, and Pédrot [BMP22] externally validated a
continuity principle for a simple intensional type theory with
restricted dependent elimination.
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The computational system TT□
C (1)

To internalise ICP, we work in the system TT□
C [CR22; CR23]:

An effectful, extensional type theory.

▶ TT□
C is more general than we need here.

▶ For the purposes of our work: it is a computational type theory
equipped with mutable references.
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The computational system TT□
C (2)

v ∈ Val ::= vt (type) | λx.t (lambda)
| n (number) | inl(t) (le� inj.)
| ⟨t1, t2⟩ (pair) | inr(t) (right inj.)
| ⋆ (constant) | δ (ref. name)

v ∈ Type ::= Πx:t1 t2 (product) | Ui (universe)
| Σx:t1 t2 (sum) | t1 = t2 ∈ t (equality)
| {x : t1 | t2} (set) | ∥t∥ (truncation)
| Nat (naturals) | t1 ∩ t2 (intersection)
| t1 + t2 (disj. union) | pure (pure)

t ∈ Term ::= x (variable) | !t (read)
| v (value) | νx.t (fresh)
| t1t2 (application) | t1 := t2 (write)
| fix(t) (fixed point) | t1 ∩ t2 (intersection)
| t1 <? t2 (less than) | t1 =? t2 (equality)
| let x, y = t1 in t2 (pair destr.) | let x = t1 in t2 (cbv)
| t1 + t2 (addition)

▶ A computational type theory in the sense of [Con02].
▶ Typing is extrinsic.
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Implementing ICP in TT□
C (1)

Our TT□
C program, expressed in OCaml2.

type baire = nat -> nat

type brouwer_tree = Leaf of nat | Branch of (nat -> brouwer_tree)

let m : nat ref = ref 0

let generic (ns : nat list) : nat -> nat = fun i ->
m := max i !m;
if i >= List.length ns then 0 else List.nth ns i

let compute_btree (f : baire -> nat) : brouwer_tree =
let rec loop (ns : nat list) : brouwer_tree =

let i = f (generic ns) in
if !m < List.length ns then

Leaf i
else

Branch (fun n -> loop (ns @ [n]))
in loop []

2Our presentation of the program here follows Sterling [Ste21].
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Implementing ICP in TT□
C (2)

We can now define the function follow that decodes the
computation encoded by the path given by α.

let follow (alpha : baire) : brouwer_tree -> nat =
let rec loop (n : nat) (t : brouwer_tree) : nat =
match t with
| Leaf k -> k
| Branch phi -> loop (1 + n) (phi (alpha n))

in loop 0

The modulus at α is then just the depth of the path given by α.

let modulus_at (alpha : baire) : brouwer_tree -> nat =
let rec loop (n : nat) (t : brouwer_tree) : nat =
match t with
| Leaf _ -> n
| Branch phi -> loop (1 + n) (phi (alpha n))

in loop 0

12 / 21



An overview of the proof

Goal: Our TT□
C implementation of the aforementioned program

inhabits the type:

Πp
F :B→Nat

∥∥Σd:BTree Π
p
α:B follow(d, α) = F (α)

∥∥.
▶ Step 1: We start with a version of the program that gives a

Brouwer co-tree.

▶ Step 2: Given a F : B → Nat, we compute the Brouwer co-tree
and proceed by case analysis (using classical logic) on whether
the co-tree contains an infinite path or not.

▶ Step 3: Existence of an infinite path contradicts the continuity of
F .

▶ Step 4: In the case where all the branches of t are finite, we
transform the Brouwer co-tree into a Brouwer tree.

▶ Step 5: We then show that the resulting Brouwer tree d satisfies
the desired property of follow(d, α) = F (α).
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Deriving UCP

Brouwer proved [Bee80; Bro27] that all real-valued functions on the
unit interval are uniformly continuous using Cont and his Fan
Theorem, which he derived from his Bar Thesis.

In our case, ICP is strong enough to give UCP without the Fan
Theorem.

Key idea: if B → Nat is restricted to C → Nat, the modulus of
uniform continuity is the depth of the longest path, which can be
computed independently of the input.
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Conclusion and further work

We have constructed a program in TT□
C that realises ICP (for pure

functions), by making use of references.

Our results are completely formalised in the Agda proof assistant3.

Some further questions to investigate:

▶ Can we generalise references to more general effects?
▶ We have not yet shown that Cont is strictly weaker than ICP.
▶ Big question: can we make this (or possibly a different) program

work for all TT□
C functions instead of just the pure ones?

3Code available at https://github.com/vrahli/opentt.
15 / 21
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