## Locale Theory in Univalent Foundations

#### Ayberk Tosun<sup>1</sup>

<sup>1</sup>University of Birmingham, UK

21 March 2023 ASSUME Nottingham, UK

# Topology in which the notion of **space** is understood primarily in terms of its

lattice of opens

rather than its

set of points.

## A frame is a lattice

- with finite meets,
- arbitrary joins, and in which
- the meets distribute over the joins.

A locale is a

notion of space characterized by an abstract *frame* of opens.

The systematic study of lattice theory in UF was started by de Jong and Escardó [JE21; JE23].

They were investigating constructive and predicative UF as a foundational setting for **domain theory**.

The systematic study of lattice theory in UF was started by de Jong and Escardó [JE21; JE23].

They were investigating constructive and predicative UF as a foundational setting for **domain theory**.

They have implemented several important constructions of domain theory.

- The Scott model of PCF.
- Its soundness and computational adequacy.
- Scott's  $D_{\infty}$  model of the untyped  $\lambda$ -calculus.

## Foundational preliminaries – notions of size

#### Definition (*V*-smallness)

A type  $X : \mathcal{U}$  is called  $\mathcal{V}$ -small if it has a copy in universe  $\mathcal{V}$  i.e.  $\sum_{Y:\mathcal{V}} X \simeq Y$ .

## Foundational preliminaries – notions of size

#### Definition (*V*-smallness)

A type  $X : \mathcal{U}$  is called  $\mathcal{V}$ -small if it has a copy in universe  $\mathcal{V}$  i.e.  $\sum_{Y:\mathcal{V}} X \simeq Y$ .

#### Definition (Local V-smallness)

A type  $X : \mathcal{U}$  is called **locally**  $\mathcal{V}$ -small if the identity type x = y is  $\mathcal{V}$ -small for any two x, y : X.

## Foundational preliminaries – notions of size

#### Definition (*V*-smallness)

A type  $X : \mathcal{U}$  is called  $\mathcal{V}$ -small if it has a copy in universe  $\mathcal{V}$  i.e.  $\sum_{Y:\mathcal{V}} X \simeq Y$ .

#### Definition (Local V-smallness)

A type  $X : \mathcal{U}$  is called **locally**  $\mathcal{V}$ -small if the identity type x = y is  $\mathcal{V}$ -small for any two x, y : X.

#### Proposition

The following are equivalent.

- For any type A : U, universe V, the type expressing that A is V-small is a proposition.
- The univalence axiom holds.

Definition ( $\Omega$ )

We denote by  $\Omega_{\mathcal{U}}$  the type of propositions in universe  $\mathcal{U}.$ 

Definition ( $\Omega$ )

We denote by  $\Omega_{\mathcal{U}}$  the type of propositions in universe  $\mathcal{U}$ .

The following was formulated by Voevodsky in [Voe11].

Definition (Propositional resizing)

The **propositional**  $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that every proposition  $P : \Omega_{\mathcal{U}}$  is  $\mathcal{V}$ -small.

Definition ( $\Omega$ )

We denote by  $\Omega_{\mathcal{U}}$  the type of propositions in universe  $\mathcal{U}.$ 

The following was formulated by Voevodsky in [Voe11].

Definition (Propositional resizing)

The **propositional**  $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that every proposition  $P : \Omega_{\mathcal{U}}$  is  $\mathcal{V}$ -small.

Definition ( $\Omega$ -resizing)

The  $\Omega$ - $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that  $\Omega_{\mathcal{U}}$  is  $\mathcal{V}$ -small.

Definition ( $\Omega$ )

We denote by  $\Omega_{\mathcal{U}}$  the type of propositions in universe  $\mathcal{U}$ .

The following was formulated by Voevodsky in [Voe11].

Definition (Propositional resizing)

The **propositional** (U, V)-resizing axiom says that every proposition  $P: \Omega_U$  is V-small.

Definition ( $\Omega$ -resizing)

The  $\Omega$ - $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that  $\Omega_{\mathcal{U}}$  is  $\mathcal{V}$ -small.

#### Definition ( $\Omega$ <sup>¬</sup>-resizing)

The  $\Omega^{\neg \neg}$ - $(\mathcal{U}, \mathcal{V})$ -resizing axiom says that the type  $\Omega_{\mathcal{U}}^{\neg \neg}$  is  $\mathcal{V}$ -small.

## Foundational preliminaries - resizing continued

Proposition

Any type  $X : \mathcal{U}$  is  $(\mathcal{U} \sqcup \mathcal{V})$ -small for every universe  $\mathcal{V}$ .

## Foundational preliminaries - resizing continued

#### Proposition

Any type  $X : \mathcal{U}$  is  $(\mathcal{U} \sqcup \mathcal{V})$ -small for every universe  $\mathcal{V}$ .

#### Proposition

 $\Omega$ - $(\mathcal{U}, \mathcal{V})$ -resizing implies propositional  $(\mathcal{U}, \mathcal{V})$ -resizing.

## Foundational preliminaries - resizing continued

#### Proposition

Any type  $X : \mathcal{U}$  is  $(\mathcal{U} \sqcup \mathcal{V})$ -small for every universe  $\mathcal{V}$ .

#### Proposition

 $\Omega$ - $(\mathcal{U}, \mathcal{V})$ -resizing implies propositional  $(\mathcal{U}, \mathcal{V})$ -resizing.

#### Proposition

LEM implies  $\Omega$ -( $\mathcal{U}, \mathcal{V}$ )-resizing for all universes.

#### Proof sketch.

- If LEM holds, all propositions are decidable i.e.  $\Omega \simeq 2$ .
- ► The type **2** always has a copy in U<sub>0</sub>.
- ► Types in U<sub>0</sub> can always be lifted up to any universe.

## Foundational preliminaries – some basic notions

#### Definition (Family)

A  $\mathcal{U}$ -family on a type A is a pair  $(I, \alpha)$  where  $I : \mathcal{U}$  and  $\alpha : I \to A$ .

We denote the type of  $\mathcal{U}$ -families on type A by  $\mathsf{Fam}_{\mathcal{U}}(A)$  i.e.

$$\mathsf{Fam}_{\mathcal{U}}\left(A\right) :\equiv \sum_{I:\mathcal{U}} I \to A.$$

## Foundational preliminaries - some basic notions

#### Definition (Family)

A  $\mathcal{U}$ -family on a type A is a pair  $(I, \alpha)$  where  $I : \mathcal{U}$  and  $\alpha : I \to A$ .

We denote the type of  $\mathcal U$  -families on type A by  $\mathsf{Fam}_{\mathcal U}\left(A\right)$  i.e.

$$\mathsf{Fam}_{\mathcal{U}}\left(A\right) :\equiv \sum_{I:\mathcal{U}} I \to A.$$

#### Definition (Directed family)

Let  $(x_i)_{i:I}$  be a family on some type A that is equipped with a preorder -  $\leq$  -. This family is called **directed** if

- 1. *I* is inhabited, and
- 2. for every i, j : I, there exists some k : I such that  $x_k$  is an upper bound of  $\{x_i, x_j\}$ .

## Lattices in UF - warm-up

#### Definition (Join-semilattice)

A  $(\mathcal{U},\mathcal{V})$ -join-semilattice consists of

- ▶ a type A : U,
- a partial order  $\leq$  :  $A \rightarrow \Omega_{\mathcal{V}}$ ,
- a bottom element 0 : A,
- a binary join operation  $\lor$  :  $A \rightarrow A \rightarrow A$ .

## Lattices in UF - warm-up

#### Definition (Join-semilattice)

A  $(\mathcal{U},\mathcal{V})$ -join-semilattice consists of

- a type  $A : \mathcal{U}$ ,
- a partial order  $\leq$  :  $A \rightarrow A \rightarrow \Omega_{\mathcal{V}}$ ,
- a bottom element 0 : A,
- a binary join operation  $\lor$  :  $A \rightarrow A \rightarrow A$ .

#### Proposition

Let A be a  $(\mathcal{U}, \mathcal{V})$ -join-semilattice. The truth value  $x \leq y$  is  $\mathcal{W}$ -small if and only if the carrier A is a locally  $\mathcal{W}$ -small type.

#### Proof sketch.

$$(\Rightarrow)$$
 antisymmetry;  $(\Leftarrow)$   $x \leq y \leftrightarrow x \lor y = y$ .

## Complete and directed-complete lattices

#### Definition (Directed-complete poset)

A  $\mathcal W\text{-directed-complete}\ (\mathcal U,\mathcal V)\text{-poset}\ \text{consists}\ \text{of}$ 

- ▶ a type A : U,
- a partial order  $\leq$  :  $A \rightarrow \Omega_{\mathcal{V}}$ ,

► joins of all **directed** *W*-families.

## Complete and directed-complete lattices

#### Definition (Directed-complete poset)

A  $\mathcal W\text{-directed-complete}\ (\mathcal U,\mathcal V)\text{-poset}\ \text{consists}\ \text{of}$ 

- a type  $A : \mathcal{U}$ ,
- a partial order  $\leq$  :  $A \rightarrow \Omega_{\mathcal{V}}$ ,

► joins of all **directed** *W*-families.

A dcpo is called **pointed** if it additionally has a least element.

## Complete and directed-complete lattices

#### Definition (Directed-complete poset)

A  $\mathcal W\text{-directed-complete}\ (\mathcal U,\mathcal V)\text{-poset}\ \text{consists}\ \text{of}$ 

- a type  $A : \mathcal{U}$ ,
- a partial order  $\leq$  :  $A \rightarrow A \rightarrow \Omega_{\mathcal{V}}$ ,

▶ joins of all **directed** *W*-families.

A dcpo is called **pointed** if it additionally has a least element.

Definition (Complete join-lattice)

A  $\mathcal W\text{-complete}\ (\mathcal U,\mathcal V)\text{-join-lattice}\ consists$  of

- a type  $A : \mathcal{U}$ ,
- a partial order  $\leq$  :  $A \rightarrow A \rightarrow \Omega_{\mathcal{V}}$ ,
- ► joins of **all** *W*-families.

Curi [Cur10] previously investigated the limits of predicative mathematics in CZF.

Curi showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

Curi [Cur10] previously investigated the limits of predicative mathematics in CZF.

Curi showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called GUP.

Curi [Cur10] previously investigated the limits of predicative mathematics in CZF.

Curi showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called GUP.

In contrast to Curi's work, the work of de Jong and Escardó is in the style of **reverse constructive mathematics** [Ish06].

Curi [Cur10] previously investigated the limits of predicative mathematics in CZF.

Curi showed:

CZF cannot prove that certain classes of nontrivial complete lattices (including join-lattices, dcpos, and frames) are small.

He achieves this by showing that CZF is consistent with an anti-classical principle called GUP.

In contrast to Curi's work, the work of de Jong and Escardó is in the style of **reverse constructive mathematics** [Ish06].

They show **directly** that certain results cannot be obtained predicatively, by deriving resizing axioms from them.

#### **Definition (Lifting)**

Let  $P: \Omega_{\mathcal{U}}$ . The  $\mathcal{V}$ -lifting of P is defined as

$$\mathcal{L}_{\mathcal{V}}(P) :\equiv \sum_{Q:\Omega_{\mathcal{V}}} Q \to P.$$

#### Proposition

This is a  $\mathcal{V}$ -join-lattice when ordered under implication.

## A brief summary of de Jong and Escardó's main results

#### Question

Does  $\mathcal{L}_{\mathcal{V}}(P): \mathcal{V}^+ \sqcup \mathcal{U}$  have a maximal element?

## A brief summary of de Jong and Escardó's main results

#### Question

Does  $\mathcal{L}_{\mathcal{V}}(P): \mathcal{V}^+ \sqcup \mathcal{U}$  have a maximal element?

#### Theorem

#### The following are equivalent.

- 1.  $\mathcal{L}_{\mathcal{V}}(P)$  has a maximal element.
- 2.  $\mathcal{L}_{\mathcal{V}}(P)$  has a greatest monotone inflationary endofunction.
- 3. The identity map  $\operatorname{id} : \mathcal{L}_{\mathcal{V}}(P) \to \mathcal{L}_{\mathcal{V}}(P)$  has a g.f.p.
- 4.  $\mathcal{L}_{\mathcal{V}}(P)$  has a small basis.
- 5. Propositional  $(\mathcal{U}, \mathcal{V})$ -resizing holds

## A brief summary of de Jong and Escardó's main results

#### Question

Does  $\mathcal{L}_{\mathcal{V}}(P): \mathcal{V}^+ \sqcup \mathcal{U}$  have a maximal element?

#### Theorem

#### The following are equivalent.

- 1.  $\mathcal{L}_{\mathcal{V}}(P)$  has a maximal element.
- 2.  $\mathcal{L}_{\mathcal{V}}(P)$  has a greatest monotone inflationary endofunction.
- 3. The identity map  $\operatorname{id} : \mathcal{L}_{\mathcal{V}}(P) \to \mathcal{L}_{\mathcal{V}}(P)$  has a g.f.p.
- 4.  $\mathcal{L}_{\mathcal{V}}(P)$  has a small basis.
- 5. Propositional  $(\mathcal{U}, \mathcal{V})$ -resizing holds

#### Theorem

Existence of a nontrivial \* complete small poset implies  $\Omega$ -resizing.

#### Definition (Frame)

- A  $(\mathcal{U},\mathcal{V},\mathcal{W})$ -frame consists of
  - ▶ a type A : U,
  - a partial order  $\leq$  :  $A \rightarrow \Omega_{\mathcal{V}}$ ,
  - a top element 1 : A,
  - a binary meet operation  $\wedge$  :  $A \rightarrow A \rightarrow A$ ,
  - a join operation  $\bigvee$  \_ : Fam<sub>W</sub>  $(A) \rightarrow A$ ;
  - ► satisfying distributivity i.e. x ∧ V<sub>i:I</sub> y<sub>i</sub> = V<sub>i:I</sub> x ∧ y<sub>i</sub> for every x : A and W-family (y<sub>i</sub>)<sub>i:I</sub> in A.

## Some locale theory notation

A **frame homomorphism** is a function preserving finite meets and arbitrary joins.

The category of frames and their homomorphisms is denoted **Frm**; its opposite is denoted **Loc**.

Morphisms of Loc are called continuous maps.

The frame corresponding to a locale X is denoted  $\mathcal{O}(X)$ .

We work in the spatial direction:

- $X, Y, Z, \ldots$  range over locales;
- ▶  $f, g: X \to Y$  range over continuous maps;
- ▶  $U, V, W, \ldots : \mathcal{O}(X)$  range over opens; and
- $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$  denotes the frame homomorphism corresponding to a continuous map  $f : X \to Y$  of locales.

#### Question

Do we need all this generality?

No, we don't.

#### Question

Do we need all this generality?

No, we don't.

Corollary

If there exists a nontrivial small frame,  $\Omega$ -resizing holds.

#### Question

Do we need all this generality?

No, we don't.

Corollary

If there exists a nontrivial small frame,  $\Omega$ -resizing holds.

Furthermore, experience shows that most frames that come up in practice are  $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ -frames ("large and locally small").

#### Question

Do we need all this generality?

No, we don't.

Corollary

If there exists a nontrivial small frame,  $\Omega$ -resizing holds.

Furthermore, experience shows that most frames that come up in practice are  $(\mathcal{U}^+, \mathcal{U}, \mathcal{U})$ -frames ("large and locally small").

## Accordingly, we restrict attention to large and locally small frames.
# **Examples of frames**

## Definition

The **terminal locale** is the locale defined by the frame of opens  $\mathcal{O}(\mathbf{1}_{\mathcal{U}}) :\equiv \Omega_{\mathcal{U}}$ , ordered under implication. Joins are given by:

$$\left(\bigvee_{i:I} Q_i\right) :\equiv \exists k: I. Q_k.$$

# **Examples of frames**

## Definition

The **terminal locale** is the locale defined by the frame of opens  $\mathcal{O}(\mathbf{1}_{\mathcal{U}}) :\equiv \Omega_{\mathcal{U}}$ , ordered under implication. Joins are given by:

$$\left(\bigvee_{i:I} Q_i\right) :\equiv \exists k: I. Q_k.$$

#### Definition

The **discrete locale** over a set X is the type  $X \to \Omega_U$  of subsets, ordered under  $S \subseteq T :\equiv \forall x : X. x \in S \Rightarrow x \in T$ , joins given by

$$U \in \left(\bigvee_{i:I} S_i\right) :\equiv \exists i : I. U \in S_i.$$

## **Definition (Basis)**

A family  $(B_i)_{i:I}$  of opens forms a **basis** for the frame  $\mathcal{O}(X)$  if

for every  $U : \mathcal{O}(X)$ , there is a **specified**, directed  $\mathcal{W}$ -family  $(i_j)_{j:J}$  on the basis index satisfying  $U = \bigvee_{j:J} B_{i_j}$ .

## **Definition (Basis)**

A family  $(B_i)_{i:I}$  of opens forms a **basis** for the frame  $\mathcal{O}(X)$  if

for every  $U : \mathcal{O}(X)$ , there is a **specified**, directed  $\mathcal{W}$ -family  $(i_j)_{j:J}$  on the basis index satisfying  $U = \bigvee_{j:J} B_{i_j}$ .

#### Definition (Weak basis)

A family  $(B_i)_{i:I}$  of opens forms a **weak basis** for  $\mathcal{O}(X)$  if

for every open  $U : \mathcal{O}(X)$ , there is an **unspecified**, directed  $\mathcal{W}$ -family  $(i_j)_{j:J}$  on the basis index satisfying  $U = \bigvee_{j:J} B_{i_j}$ .

## **Definition (Basis)**

A family  $(B_i)_{i:I}$  of opens forms a **basis** for the frame  $\mathcal{O}(X)$  if

for every  $U : \mathcal{O}(X)$ , there is a **specified**, directed  $\mathcal{W}$ -family  $(i_j)_{j:J}$  on the basis index satisfying  $U = \bigvee_{j:J} B_{i_j}$ .

#### Definition (Weak basis)

A family  $(B_i)_{i:I}$  of opens forms a **weak basis** for  $\mathcal{O}(X)$  if

for every open  $U : \mathcal{O}(X)$ , there is an **unspecified**, directed  $\mathcal{W}$ -family  $(i_j)_{j:J}$  on the basis index satisfying  $U = \bigvee_{j:J} B_{i_j}$ .

We use the term basic covering family.

## Definition (The way-below relation)

Open U is said to be way below V (denoted  $U \ll V$ ) if

for every directed family  $(W_i)_{i:I}$  with  $V \leq \bigvee_{i:I} W_i$  there is some i: I with  $U \leq W_i$ .

## Definition (Compact open)

An open  $U : \mathcal{O}(X)$  is called **compact** if  $U \ll U$ 

#### Definition (Compact locale)

A locale X is called **compact** if  $\mathbf{1}_X$  is a compact open.

# Definition (The well-inside relation)

An open U is said to be well inside V (denoted  $U \leq V$ ) if

there exists some W : D with  $U \wedge W = \mathbf{0}_X$  and  $V \vee W = \mathbf{1}_X$ .

**Definition (Clopen)** 

An open U is called a **clopen** if  $U \leq U$ .

# Examples of lattices

In lattice/domain/locale theory, interesting classes of lattices can be defined simply by imposing restrictions on their bases.

## Definition (Algebraic dcpo)

A dcpo is called **algebraic** if it has a basis

that consists of compact elements.

In lattice/domain/locale theory, interesting classes of lattices can be defined simply by imposing restrictions on their bases.

# Definition (Algebraic dcpo)

A dcpo is called **algebraic** if it has a basis

that consists of compact elements.

## Definition (Spectral locale)

A locale X is called **spectral** if the frame  $\mathcal{O}(X)$  has a small basis

- that consists of compact elements, and is
- closed under finite meets.

In lattice/domain/locale theory, interesting classes of lattices can be defined simply by imposing restrictions on their bases.

# Definition (Algebraic dcpo)

A dcpo is called **algebraic** if it has a basis

that consists of compact elements.

#### Definition (Spectral locale)

A locale X is called **spectral** if the frame  $\mathcal{O}(X)$  has a small basis

- that consists of compact elements, and is
- closed under finite meets.

We refer to such a basis as a spectral basis.

# Examples of lattices - continued

# Definition (Continuous dcpo)

A dcpo is called **continuous** if it has a basis in which

the basic covering families consist of elements way below their joins.

# Examples of lattices - continued

# Definition (Continuous dcpo)

A dcpo is called continuous if it has a basis in which

the basic covering families consist of elements way below their joins.

Definition (Zero-dimensional locale)

A locale X is called **zero-dimensional** if its frame  $\mathcal{O}(X)$  has a basis

that consists of clopens.

# Examples of lattices - continued

# Definition (Continuous dcpo)

A dcpo is called continuous if it has a basis in which

the basic covering families consist of elements way below their joins.

## Definition (Zero-dimensional locale)

A locale X is called **zero-dimensional** if its frame  $\mathcal{O}(X)$  has a basis

that consists of clopens.

# Definition (Regular locale)

A locale X is called  $\mathbf{regular}$  if its frame  $\mathcal{O}(X)$  has some basis such that



# Examples of lattices - one final important example

#### Definition (Stone locale)

A locale X is called **Stone** if its frame  $\mathcal{O}(X)$  has a basis

- that consists of opens that are both compact and clopen,
- is closed under finite meets.

# Examples of lattices - one final important example

#### Definition (Stone locale)

A locale X is called **Stone** if its frame  $\mathcal{O}(X)$  has a basis

- that consists of opens that are both compact and clopen,
- is closed under finite meets.

#### Example

The terminal locale  $\mathbf{1}_{\mathcal{U}}$  is a Stone locale. The basis is given by the family  $\beta : \mathbf{2} \rightarrow \Omega_{\mathcal{U}}$ ,

$$\beta(0) :\equiv \bot$$
$$\beta(1) :\equiv \top$$

and both of these are clopen and compact.

The following are equivalent for a locale X:

- 1. X is spectral i.e. has an unspecified, small spectral basis.
- 2. The type  $\mathsf{K}(X)$  of compact opens forms a weak, small spectral basis.

The following are equivalent for a locale X:

- 1. X is spectral i.e. has an unspecified, small spectral basis.
- 2. The type  $\mathsf{K}(X)$  of compact opens forms a weak, small spectral basis.

Notice: the latter is automatically propositional whereas the former has to be truncated.

The following are equivalent for a locale X:

- 1. X is spectral i.e. has an unspecified, small spectral basis.
- 2. The type  $\mathsf{K}(X)$  of compact opens forms a weak, small spectral basis.

Notice: the latter is automatically propositional whereas the former has to be truncated.

## Corollary

The type of **specified spectral bases** is logically equivalent to its own truncation i.e. **has split support** [Kra+17].

The following are equivalent for a locale X:

- 1. X is spectral i.e. has an unspecified, small spectral basis.
- 2. The type  $\mathsf{K}(X)$  of compact opens forms a weak, small spectral basis.

Notice: the latter is automatically propositional whereas the former has to be truncated.

## Corollary

The type of **specified spectral bases** is logically equivalent to its own truncation i.e. **has split support** [Kra+17].

This result seems to use univalence in a crucial way! [WIP]

# Stone locales

## Definition (Stone locale)

A locale X is called **Stone** if its frame  $\mathcal{O}(X)$  has a basis

- that consists of basic opens that are both compact and clopen, and is
- closed under binary meets.

We call this a Stone basis.

# Stone locales

## Definition (Stone locale)

A locale X is called **Stone** if its frame  $\mathcal{O}(X)$  has a basis

- that consists of basic opens that are both compact and clopen, and is
- closed under binary meets.

We call this a Stone basis.

Corollary

The type of Stone bases has split support.

# Stone locales

## Definition (Stone locale)

A locale X is called **Stone** if its frame  $\mathcal{O}(X)$  has a basis

- that consists of basic opens that are both compact and clopen, and is
- closed under binary meets.

We call this a Stone basis.

#### Corollary

The type of Stone bases has split support.

#### Proposition

A locale is Stone iff it is compact and zero-dimensional.

# Relationship between spectral and Stone locales

### Proposition

Every Stone locale is spectral.

## Question

What about the other direction?

# Relationship between spectral and Stone locales

#### Proposition

Every Stone locale is spectral.

Question

What about the other direction?

Every spectral locale can be **universally transformed** into a Stone one using the **patch topology**.

## Proposition

Every Stone locale is spectral.

Question

What about the other direction?

Every spectral locale can be **universally transformed** into a Stone one using the **patch topology**.

Stone 
$$\overbrace{\perp}_{Patch}$$
 Spec

Spectral locale in consideration

Its patch

## Spectral locale in consideration

Its patch





Scott topology of a (Scott) domain

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$ 







Scott topology of a (Scott) domain

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$ 

Spectral locale in consideration





Scott topology of a (Scott) domain

Lawson topology

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$ 

Spectral locale in consideration





Scott topology of a (Scott) domain

Lawson topology

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$ 

Cantor space ( $2^{\mathbb{N}}$ )

Spectral locale in consideration





Scott topology of a (Scott) domain

Lawson topology

 $\mathcal{P}(\mathbb{N}) \simeq \Omega^{\mathbb{N}}$ 

Scott topology of domain  $\mathbb{N}_\perp$ 

Cantor space ( $2^{\mathbb{N}}$ )

 $\mathbb{N}_{\infty}$ 

A nucleus on locale X is an endofunction  $j : \mathcal{O}(X) \to \mathcal{O}(X)$  that is inflationary, idempotent, and preserves binary meets.

A nucleus is called Scott continuous if it preserves joins of directed families.

A nucleus on locale X is an endofunction  $j : \mathcal{O}(X) \to \mathcal{O}(X)$  that is inflationary, idempotent, and preserves binary meets.

A nucleus is called Scott continuous if it preserves joins of directed families.

Patch is the frame of Scott continuous nuclei.

A nucleus on locale X is an endofunction  $j : \mathcal{O}(X) \to \mathcal{O}(X)$  that is inflationary, idempotent, and preserves binary meets.

A nucleus is called Scott continuous if it preserves joins of directed families.

Patch is the frame of Scott continuous nuclei.

Previous work [Esc99; Esc01] exploited the fact that Patch is a subframe of the frame of all nuclei.

Consider a locale X and let  $j, k : \mathcal{O}(X) \to \mathcal{O}(X)$  be two nuclei.

**Ordering**:  $j \leq k :\equiv \prod_{U:\mathcal{O}(X)} j(U) \leq k(U)$ 

Top element:  $\mathbf{1} :\equiv U \mapsto \mathbf{1}_X$ .

Binary meets:  $j \downarrow k :\equiv U \mapsto j(U) \land k(U)$ .

Consider a locale X and let  $j,k:\mathcal{O}(X)\to\mathcal{O}(X)$  be two nuclei.

**Ordering**: 
$$j \preceq k :\equiv \prod_{U:\mathcal{O}(X)} j(U) \leq k(U)$$

Top element:  $\mathbf{1} :\equiv U \mapsto \mathbf{1}_X$ .

Binary meets:  $j \downarrow k :\equiv U \mapsto j(U) \land k(U)$ .

# Unfortunately, the **pointwise join** fails to be idempotent in general.
# Joins in the frame of *all* nuclei (2)

It is possible to construct the joins in the frame of all nuclei impredicatively i.e. with propositional resizing.

Previous constructions include those by

- Simmons [Sim81],
- Banaschewski [Ban88],
- Johnstone [Joh90],
- Wilson [Wil94], and
- Escardó [Esc03] who uses Pataraia's fixed point theorem.

# Joins in the frame of *all* nuclei (2)

It is possible to construct the joins in the frame of all nuclei impredicatively i.e. with propositional resizing.

Previous constructions include those by

- Simmons [Sim81],
- Banaschewski [Ban88],
- Johnstone [Joh90],
- Wilson [Wil94], and
- Escardó [Esc03] who uses Pataraia's fixed point theorem.

### **Open question**

Is the frame of all nuclei **fundamentally impredicative**? If one assumes its existence, *can one derive a form of resizing from it*?

# The frame of Scott continuous nuclei

We have constructed [TE23; AET24] the patch locale of a spectral locale and proved the above universal property (completely formalized).

#### Theorem

Given any spectral locale X, its **patch locale** Patch(X), defined by the frame of opens

$$\mathcal{O}(\mathsf{Patch}(X)) \mathrel{\mathop:}\equiv \sum_{j:\mathsf{N}(X)} j \text{ Scott continuous}$$

exhibits Stone as a coreflective subcategory of Spec.

The construction of the joins goes back to Escardo's previous work [Esc03].

#### Theorem

Let X and Y be two locales. If Y has a small, weak basis, then any frame homomorphism  $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$  has right adjoint.

### Definition

Let U be an open of a locale X. They Heyting implication  $U \Rightarrow$  (-) is defined as the right adjoint of  $U \wedge$  (-).

### **Definition (Open nucleus)**

The **open nucleus** on U is defined as  $o(U) :\equiv V \mapsto U \Rightarrow V$ .

### **Definition (Closed nucleus)**

The closed nucleus on U is defined as  $\mathbf{c}(U) :\equiv V \mapsto U \lor V$ .

### Theorem

Patch(X) is large and locally small and has a small basis consisting of clopens.

Proof sketch

The family

$$\{\mathbf{c}(B_m) \land \mathbf{o}(B_n) \mid m, n: I\}$$

forms a basis for  ${\rm Patch}(A)$  and the basic covering family for a given Scott-continuous nucleus  $j:\mathcal{O}(X)\to\mathcal{O}(X)$  is given by

 $\{\mathbf{c}(B_m) \land \mathbf{o}(B_n) \mid B_m \le j(B_n), m, n: I\}.$ 

## **References** I

- [AET24] Igor Arrieta, Martín H. Escardó, and Ayberk Tosun. *The Patch Topology in Univalent Foundations*. 2024. eprint: 2402.03134. URL: https://arxiv.org/abs/2402.03134.
- [Ban88] Bernhard Banaschewski. "Another look at the localic Tychonoff theorem". In: Commentationes Mathematicae Universitatis Carolinae 29.4 (1988), pp. 647–656.
- [Cur10] Giovanni Curi. "On some peculiar aspects of the constructive theory of point-free spaces". In: Math. Log. Q. 56.4 (2010), pp. 375–387. DOI: 10.1002/MALQ.200910037. URL: https://doi.org/10.1002/malq.200910037.
- [Esc01] Martín H. Escardó. "The regular-locally compact coreflection of a stably locally compact locale". In: Journal of pure and applied algebra 157.1 (2001), pp. 41–55. ISSN: 0022-4049.

- [Esc03] Martín H. Escardó. "Joins in the frame of nuclei". In: Applied Categorical Structures 11.2 (2003), pp. 117–124.
- [Esc99] Martín H. Escardó. "On the Compact-regular Coreflection of a Stably Compact Locale". In: vol. 20. 1999, pp. 213–228. DOI: 10.1016/S1571-0661(04)80076-8.
- [Ish06] Hajime Ishihara. "Reverse Mathematics in Bishop's Constructive Mathematics". In: *Philosophia Scientiae* CS 6 (2006), pp. 43–59. DOI:
  10. 4000 (nhilosophia scienting, 400)

10.4000/philosophiascientiae.406.

# **References III**

[JE21] Tom de Jong and Martín H. Escardó. "Predicative Aspects of Order Theory in Univalent Foundations". In: 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Ed. by Naoki Kobayashi. Vol. 195. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021, 8:1–8:18. DOI: 10.4230/LIPIcs.FSCD.2021.8.

- [JE23] Tom de Jong and Martín Hötzel Escardó. "On Small Types in Univalent Foundations". In: Logical Methods in Computer Science Volume 19, Issue 2 (May 2023). DOI: 10.46298/lmcs-19(2:8)2023. URL: https://lmcs.episciences.org/11270.
- [Joh90] Peter T. Johnstone. "Two notes on nuclei". In: Order 7 (1990), pp. 205–210.

## **References IV**

- [Kra+17] Nicolai Kraus et al. "Notions of Anonymous Existence in Martin-Löf Type Theory". In: *Logical Methods in Computer Science* 13.1 (2017). DOI: 10.23638/LMCS-13(1:15)2017.
- [Sim81] Harold Simmons. "An algebraic version of Cantor-Bendixson analysis". In: Categorical Aspects of Topology and Analysis: Proceedings of an International Conference Held at Carleton University, Ottawa, August 11–15. Springer. 1981, pp. 310–323.
- [TE23] Ayberk Tosun and Martín H. Escardó. "Patch Locale of a Spectral Locale in Univalent Type Theory". In: Proceedings of MFPS XXXVIII. Vol. 1. Electronic Notes in Theoretical Informatics and Computer Science. Feb. 2023. DOI: 10.46298/entics.10808. URL: https://entics.episciences.org/10808.

[Voe11] Vladimir Voevodsky. "Resizing Rules - Their Use and Semantic Justification". (Bergen, Norway). Sept. 11, 2011. URL: https://www.math.ias.edu/vladimir/sites/ math.ias.edu.vladimir/files/2011\_Bergen.pdf. Invited talk at TYPES 2011.

[Wil94] Todd J. Wilson. "The Assembly Tower and Some Categorical and Algebraic Aspects of Frame Theory". PhD thesis. Pittsburgh, PA: Carnegie Mellon University, 1994.