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What is locale theory?

Topology in which the notion of space is understood
primarily in terms of its

lattice of opens

rather than its

set of points.
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What is a locale?

A frame is a lattice
▶ with finite meets,
▶ arbitrary joins, and in which
▶ the meets distribute over the joins.

A locale is a

notion of space characterized by an
abstract frame of opens.

3 / 38



Lattice theory in UF

The systematic study of lattice theory in UF was started by de Jong
and Escardó [JE21; JE23].

They were investigating constructive and predicative UF as a
foundational setting for domain theory.

They have implemented several important constructions of domain
theory.
▶ The Scott model of PCF.
▶ Its soundness and computational adequacy.
▶ Scott’s D∞ model of the untyped λ-calculus.
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Foundational preliminaries – notions of size

Definition (V-smallness)

A type X : U is called V-small if it has a copy in universe V i.e.∑
Y :V X ≃ Y .

Definition (Local V-smallness)

A type X : U is called locally V-small if the identity type x = y is
V-small for any two x, y : X .

Proposition

The following are equivalent.
▶ For any type A : U , universe V , the type expressing that A is

V-small is a proposition.
▶ The univalence axiom holds.
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Foundational preliminaries – forms of resizing

Definition (Ω)

We denote by ΩU the type of propositions in universe U .

The following was formulated by Voevodsky in [Voe11].

Definition (Propositional resizing)

The propositional (U ,V)-resizing axiom says that every proposition
P : ΩU is V-small.

Definition (Ω-resizing)

The Ω-(U ,V)-resizing axiom says that ΩU is V-small.

Definition (Ω¬¬-resizing)

The Ω¬¬-(U ,V)-resizing axiom says that the type Ω¬¬
U is V-small.
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Foundational preliminaries – resizing continued

Proposition

Any type X : U is (U ⊔ V)-small for every universe V .

Proposition

Ω-(U ,V)-resizing implies propositional (U ,V)-resizing.

Proposition

LEM implies Ω-(U ,V)-resizing for all universes.

Proof sketch.

▶ If LEM holds, all propositions are decidable i.e. Ω ≃ 2.
▶ The type 2 always has a copy in U0.
▶ Types in U0 can always be li�ed up to any universe.
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Foundational preliminaries – some basic notions

Definition (Family)

A U-family on a type A is a pair (I, α) where I : U and α : I → A.

We denote the type of U-families on type A by FamU (A) i.e.

FamU (A) :≡
∑
I:U

I → A.

Definition (Directed family)

Let (xi)i:I be a family on some type A that is equipped with a
preorder - ≤ -. This family is called directed if

1. I is inhabited, and

2. for every i, j : I , there exists some k : I such that xk is an upper
bound of {xi, xj}.
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Lattices in UF – warm-up

Definition (Join-semilattice)

A (U ,V)-join-semilattice consists of
▶ a type A : U ,
▶ a partial order - ≤ - : A → A → ΩV ,
▶ a bottom element 0 : A,
▶ a binary join operation - ∨ - : A → A → A.

Proposition

Let A be a (U ,V)-join-semilattice. The truth value x ≤ y is W-small
if and only if the carrier A is a locally W-small type.

Proof sketch.
(⇒) antisymmetry; (⇐) x ≤ y ↔ x ∨ y = y.
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Complete and directed-complete lattices

Definition (Directed-complete poset)

A W-directed-complete (U ,V)-poset consists of
▶ a type A : U ,
▶ a partial order - ≤ - : A → A → ΩV ,
▶ joins of all directed W-families.

A dcpo is called pointed if it additionally has a least element.

Definition (Complete join-lattice)

A W-complete (U ,V)-join-lattice consists of
▶ a type A : U ,
▶ a partial order - ≤ - : A → A → ΩV ,
▶ joins of all W-families.
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Reverse predicative mathematics in UF

Curi [Cur10] previously investigated the limits of predicative
mathematics in CZF.

Curi showed:

CZF cannot prove that certain classes of nontrivial com-
plete lattices (including join-lattices, dcpos, and frames)
are small.

He achieves this by showing that CZF is consistent with an
anti-classical principle called GUP.

In contrast to Curi’s work, the work of de Jong and Escardó is in the
style of reverse constructive mathematics [Ish06].

They show directly that certain results cannot be obtained
predicatively, by deriving resizing axioms from them.
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Li�ing of a proposition

Definition (Li�ing)

Let P : ΩU . The V-li�ing of P is defined as

LV(P ) :≡
∑
Q:ΩV

Q → P .

Proposition

This is a V-join-lattice when ordered under implication.
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A brief summary of de Jong and Escardó’s main results

Question

Does LV(P ) : V+ ⊔ U have a maximal element?

Theorem
The following are equivalent.

1. LV(P ) has a maximal element.

2. LV(P ) has a greatest monotone inflationary endofunction.

3. The identity map id : LV(P ) → LV(P ) has a g.f.p.

4. LV(P ) has a small basis.

5. Propositional (U ,V)-resizing holds

Theorem
Existence of a nontrivial∗ complete small poset implies Ω-resizing.
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Frames

Definition (Frame)

A (U ,V,W)-frame consists of
▶ a type A : U ,
▶ a partial order - ≤ - : A → A → ΩV ,
▶ a top element 1 : A,
▶ a binary meet operation - ∧ - : A → A → A,
▶ a join operation

∨
_ : FamW (A) → A;

▶ satisfying distributivity i.e. x ∧
∨

i:I yi =
∨

i:I x ∧ yi for every
x : A and W-family (yi)i:I in A.
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Some locale theory notation

A frame homomorphism is a function preserving finite meets and
arbitrary joins.

The category of frames and their homomorphisms is denoted Frm;
its opposite is denoted Loc.
▶ Morphisms of Loc are called continuous maps.

The frame corresponding to a locale X is denoted O(X).

We work in the spatial direction:
▶ X,Y, Z, . . . range over locales;
▶ f, g : X → Y range over continuous maps;
▶ U, V,W, . . . : O(X) range over opens; and
▶ f∗ : O(Y ) → O(X) denotes the frame homomorphism

corresponding to a continuous map f : X → Y of locales.
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What category of frames do we want?

Question

Do we need all this generality?

No, we don’t.

Corollary

If there exists a nontrivial small frame, Ω-resizing holds.

Furthermore, experience shows that most frames that come up in
practice are (U+,U ,U)-frames (“large and locally small”).

Accordingly, we restrict attention to
large and locally small frames.
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Examples of frames

Definition
The terminal locale is the locale defined by the frame of opens
O(1U ) :≡ ΩU , ordered under implication. Joins are given by:(∨

i:I

Qi

)
:≡ ∃k : I. Qk.

Definition
The discrete locale over a set X is the type X → ΩU of subsets,
ordered under S ⊆ T :≡ ∀x : X. x ∈ S ⇒ x ∈ T , joins given by

U ∈

(∨
i:I

Si

)
:≡ ∃i : I. U ∈ Si.

17 / 38



Examples of frames

Definition
The terminal locale is the locale defined by the frame of opens
O(1U ) :≡ ΩU , ordered under implication. Joins are given by:(∨

i:I

Qi

)
:≡ ∃k : I. Qk.

Definition
The discrete locale over a set X is the type X → ΩU of subsets,
ordered under S ⊆ T :≡ ∀x : X. x ∈ S ⇒ x ∈ T , joins given by

U ∈

(∨
i:I

Si

)
:≡ ∃i : I. U ∈ Si.

17 / 38



Notion of bases for frames

Definition (Basis)

A family (Bi)i:I of opens forms a basis for the frame O(X) if

for every U : O(X), there is a specified, directed W-family (ij)j:J on
the basis index satisfying U =

∨
j:J Bij .

Definition (Weak basis)

A family (Bi)i:I of opens forms a weak basis for O(X) if

for every open U : O(X), there is an unspecified, directed W-family
(ij)j:J on the basis index satisfying U =

∨
j:J Bij .

We use the term basic covering family.
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The way-below relation

Definition (The way-below relation)

Open U is said to be way below V (denoted U ≪V ) if

for every directed family (Wi)i:I with V ≤
∨

i:I Wi there is some
i : I with U ≤ Wi.

Definition (Compact open)

An open U : O(X) is called compact if U ≪U

Definition (Compact locale)

A locale X is called compact if 1X is a compact open.
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The well-inside relation

Definition (The well-inside relation)

An open U is said to be well inside V (denoted U ⪕V ) if

there exists some W : D with U ∧W = 0X and V ∨W = 1X .

Definition (Clopen)

An open U is called a clopen if U ⪕U .

20 / 38



Examples of lattices

In lattice/domain/locale theory, interesting classes of lattices can be
defined simply by imposing restrictions on their bases.

Definition (Algebraic dcpo)

A dcpo is called algebraic if it has a basis
▶ that consists of compact elements.

Definition (Spectral locale)

A locale X is called spectral if the frame O(X) has a small basis
▶ that consists of compact elements, and is
▶ closed under finite meets.

We refer to such a basis as a spectral basis.
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Examples of lattices – continued

Definition (Continuous dcpo)

A dcpo is called continuous if it has a basis in which
▶ the basic covering families consist of elements way below their

joins.

Definition (Zero-dimensional locale)

A locale X is called zero-dimensional if its frame O(X) has a basis
▶ that consists of clopens.

Definition (Regular locale)

A locale X is called regular if its frame O(X) has some basis such
that
▶ the basic covering families consist of elements well inside their

joins.
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Examples of lattices – one final important example

Definition (Stone locale)

A locale X is called Stone if its frame O(X) has a basis
▶ that consists of opens that are both compact and clopen,
▶ is closed under finite meets.

Example

The terminal locale 1U is a Stone locale.
The basis is given by the family β : 2 → ΩU ,

β(0) :≡ ⊥
β(1) :≡ ⊤

and both of these are clopen and compact.
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Spectral locales

Theorem
The following are equivalent for a locale X :

1. X is spectral i.e. has an unspecified, small spectral basis.

2. The type K(X) of compact opens forms a weak, small spectral
basis.

Notice: the latter is automatically propositional whereas the former
has to be truncated.

Corollary

The type of specified spectral bases is logically equivalent to its own
truncation i.e. has split support [Kra+17].

This result seems to use univalence in a crucial way! [WIP]
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Stone locales

Definition (Stone locale)

A locale X is called Stone if its frame O(X) has a basis
▶ that consists of basic opens that are both compact and clopen,

and is
▶ closed under binary meets.

We call this a Stone basis.

Corollary

The type of Stone bases has split support.

Proposition

A locale is Stone iff it is compact and zero-dimensional.
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Relationship between spectral and Stone locales

Proposition

Every Stone locale is spectral.

Question

What about the other direction?

Every spectral locale can be universally transformed into a Stone
one using the patch topology.

Stone Spec
Patch

⊣
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Some examples of patch

Spectral locale in consideration Its patch

Sierpiński space Booleans (2)

Scott topology of a (Scott) domain Lawson topology

P(N) ≃ ΩN Cantor space (2N)

Scott topology of domain N⊥ N∞
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A description of Patch

A nucleus on locale X is an endofunction j : O(X) → O(X) that is
inflationary, idempotent, and preserves binary meets.

A nucleus is called Scott continuous if it preserves joins of directed
families.

Patch is the frame of Scott continuous nuclei.

Previous work [Esc99; Esc01] exploited the fact that Patch is a
subframe of the frame of all nuclei.
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Joins in the frame of all nuclei (1)

Consider a locale X and let j, k : O(X) → O(X) be two nuclei.

Ordering: j ⪯ k :≡
∏

U :O(X) j(U) ≤ k(U)

Top element: 1 :≡ U 7→ 1X .

Binary meets: j ⋏ k :≡ U 7→ j(U) ∧ k(U).

Unfortunately, the pointwise join fails to be
idempotent in general.
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Joins in the frame of all nuclei (2)

It is possible to construct the joins in the frame of all nuclei
impredicatively i.e. with propositional resizing.

Previous constructions include those by
▶ Simmons [Sim81],
▶ Banaschewski [Ban88],
▶ Johnstone [Joh90],
▶ Wilson [Wil94], and
▶ Escardó [Esc03] who uses Pataraia’s fixed point theorem.

Open question

Is the frame of all nuclei fundamentally impredicative? If one
assumes its existence, can one derive a form of resizing from it?
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The frame of Scott continuous nuclei

We have constructed [TE23; AET24] the patch locale of a spectral
locale and proved the above universal property (completely
formalized).

Theorem
Given any spectral locale X , its patch locale Patch(X), defined by
the frame of opens

O(Patch(X)) :≡
∑

j:N(X)

j Scott continuous

exhibits Stone as a coreflective subcategory of Spec.

The construction of the joins goes back to Escardó’s previous
work [Esc03].
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The closed and open nuclei

Theorem
Let X and Y be two locales. If Y has a small, weak basis, then any
frame homomorphism f∗ : O(Y ) → O(X) has right adjoint.

Definition
Let U be an open of a locale X . They Heyting implication U ⇒ (-) is
defined as the right adjoint of U ∧ (-).

Definition (Open nucleus)

The open nucleus on U is defined as o(U) :≡ V 7→ U ⇒ V .

Definition (Closed nucleus)

The closed nucleus on U is defined as c(U) :≡ V 7→ U ∨ V .
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Basis of patch

Theorem
Patch(X) is large and locally small and has a small basis consisting
of clopens.

Proof sketch
The family

{c(Bm) ∧ o(Bn) | m,n : I}

forms a basis for Patch(A) and the basic covering family for a given
Scott-continuous nucleus j : O(X) → O(X) is given by

{c(Bm) ∧ o(Bn) | Bm ≤ j(Bn),m, n : I}.
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